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This paper is an extension of a previous treatment of ‘twins by merohedry’ with

full lattice coincidence [� = 1, Klapper & Hahn (2010). Acta Cryst. A66, 327–

346] to ‘twins by reticular merohedry’ with partial lattice coincidence (� > 1).

Again, the sets of symmetrically equivalent reflections {hkl} are considered as

sets of equivalent faces (face forms) {hkl}, and the behaviour of the oriented

eigensymmetries of these forms under the action of a twin operation is used to

determine the X-ray reflection sets, the intensities of which are affected or not

affected by the twinning. The following cases are treated: rhombohedral

obverse/reverse �3 twins, cubic �3 (spinel) twins, tetragonal �5 twins (twin

elements m0(120), 20[210]) and hexagonal �7 twins (m0(1230), 20[210]). For each

case the twin laws for all relevant point groups are defined, and the twin

diffraction cases A (intensity of twin-related reflection sets not affected), B1

(intensity affected), B2 (intensity affected only by anomalous scattering) and S

(single, i.e. non-coincident reflection sets) are derived for all twin laws. A special

treatment is provided for the cubic �3 twins, where the cubic face forms first

have to be split into up to four rhombohedral subforms with a threefold axis

along one of the four cube h111i directions, here [111]. These subforms exhibit

different twin diffraction cases analogous to those derived for the rhombohedral

obverse/reverse �3 twins. A complete list of the split forms and their diffraction

cases for all cubic point groups and all �3 twin elements is given. The

application to crystal structure determination of crystals twinned by reticular

merohedry and to X-ray topographic mapping of twin domains is discussed.

1. Introduction

In this contribution we deal with ‘twinning by reticular (or

lattice) merohedry’ (Friedel, 1926, p. 444; Hahn & Klapper,

2003, Sections 3.3.8 and 3.3.9), which is the extension of a

previous article on the twinning by (strict) merohedry (� = 1)

(Klapper & Hahn, 2010) to the case of ‘twinning with partial

lattice coincidence’ (lattice index � > 1). In order to avoid

repetitions, the reader is asked to read the former paper. Here

we briefly repeat only the fundamental ideas and results of

that contribution.

(i) A face form (crystal form) {hkl} is the set of all crystal

faces that are symmetrically equivalent with respect to the

point group G of the crystal. The eigensymmetry H (‘shape

symmetry’) of a face form is the point group of the face form.

It is a proper or improper supergroup of the generating point

group: G � H. Example: the tetragonal prism {100} generated

by point group G = 4 has the eigensymmetry H = 4/m2/m2/m.

The other tetragonal prisms {110} and {hk0} exhibit the same

type of eigensymmetry, but have different ‘oriented eigen-

symmetries’. Of particular significance are the non-centro-

symmetric face forms.1

(ii) We illustrate an X-ray reflection hkl by the corre-

sponding crystal face (hkl) and a set {hkl} of symmetrically

equivalent reflections by the corresponding face form {hkl}.

Since all reflections of the set corresponding to a face form are

symmetrically equivalent, they have the same structure-factor

moduli |F |. Reflection sets {hkl} of non-centrosymmetric face

forms are acentric, i.e. ‘opposite’ reflections hkl and hkl are

not symmetrically equivalent and have therefore different F

moduli, owing to different (possibly small) anomalous scat-

tering contributions (Bijvoet pairs). Reflections belonging to

centrosymmetric face forms are centric, i.e. opposite reflections

1 A complete listing of all general and special face forms of the 32 point groups
is given in ch. 10 of Hahn & Klapper (2002), Table 10.1.2.2; the
eigensymmetries of the 47 face forms are listed in Table 10.1.2.3. Illustrations
of all face forms are contained in ch. 3.2 (pp. 184–188) of the book by
Vainshtein (1994), ch. 3 (Fig. 73) of Shubnikov & Koptsik (1974) and ch. 10 of
Buerger (1956).

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=au5124&bbid=BB48


hkl and hkl belong to the same face form: they are equivalent

and have the same F moduli (Friedel pairs).

(iii) The correspondence of reflection sets and face forms is

applied to illustrate the intensity relations of X-ray reflections

of crystals twinned by (strict) merohedry (� = 1). Here, the

twin operation is a symmetry operation of the lattice point

group (holohedry), i.e. the lattices of the two twin components

are completely mapped upon themselves, and so are their

reciprocal lattices. Thus, all different twin domains are

simultaneously in an exact reflection position for all reflections

hkl, and their intensities are superimposed. Two kinds, A and

B, of reflections hkl are distinguished in terms of the eigen-

symmetry of their corresponding face form {hkl}:

‘Twin diffraction case A’: the twin element is a symmetry

element of the oriented eigensymmetry of the face form {hkl},

i.e. the face form is mapped upon itself by the twinning, and so

is the set of corresponding reflections, i.e. the twin-related

superimposed reflections are symmetrically equivalent and

have the same structure-factor moduli |F |. The intensity of this

kind of superimposed reflection is independent of the volume

ratio of the twin components, and in X-ray topography there is

no ‘area contrast’ of the twin domains.

‘Twin diffraction case B’: the twin element is not a symmetry

element of the oriented eigensymmetry of the face form, i.e.

the form is not mapped upon itself and the corresponding

twin-related reflections are not symmetrically equivalent and,

hence, have different F moduli. The intensity of these super-

imposed reflections depends on the volume ratio of the twin

components, and in X-ray topography the twin domains are

distinguished by ‘area contrast’.

Diffraction case B is further subdivided into cases B1 and

B2:

Diffraction case B1: the face form {hkl} is not mapped by the

twin operation upon itself nor, if non-centrosymmetric, upon

its inverse (‘opposite’) form {hkl} (see case B2 below). Thus,

the geometric structure factors are different and so are the

superimposed intensities of these twin-related reflections.

Diffraction case B2: the face form {hkl} is non-centrosym-

metric and mapped by the twin operation upon its ‘opposite’

form {hkl}: the F moduli of the twin-related reflections differ

only due to their different anomalous-scattering contributions,

whereas the geometric parts of the structure factors are equal

(Bijvoet sets). In the case of low anomalous scattering the

difference between the two F moduli may be negligible.

In the previous paper (Klapper & Hahn, 2010), these cases

and their applications are fully treated, with examples and a

complete listing of all 63 cases of twins by (strict) merohedry

(� = 1). These results are now supplemented by the following

statement concerning the effect of systematic space-group

extinctions on the intensities of superimposed twin-related

reflections:

If there are reflection conditions (‘systematic extinctions’)

due to cell centring, glide planes or screw axes, a (twinning)

coincidence of non-extinct (‘present’) reflections of one

domain with extinct (‘absent’) twin-related reflections of the

other domain, and vice versa, does not occur. The �1 twin

operations map non-extinct on non-extinct and extinct on

extinct reflections, with one single exception among all space

groups: the cubic space group P21/a3 with �1 twin law 2/m3!

4/m32/m. Because of the a glide, twin-related reflection sets

{0kl} and {k0l}2 (non-equivalent pentagon-dodecahedra) obey

the reflection conditions k = 2n and l = 2m, respectively. Thus,

for sets {0kl} and {k0l} with mixed even and odd k and l, one of

the superimposed sets is always extinct, whereas pairs with

both k, l odd are extinct and with both k, l even are ‘present’.

This holds for all reflections of the set (i.e. for all cyclic

permutations of 0, k, l).

It is finally emphasized that face forms and their eigen-

symmetries are used here to illustrate geometrically the sets of

equivalent reflections (all having the same F moduli) and their

symmetries.3 They do not provide any information about the

absolute values of the reflection intensities. A face form {hkl}

represents all orders nh, nk, nl of a reflection hkl, independent

of their F moduli, including those reflection orders which are

extinct (i.e. |F | = 0). In the following we use the symbol {hkl}

synonymously for face forms and reflection sets.

2. Twins by reticular merohedry

2.1. Basic features, examples

In twinning by reticular merohedry the twin operation is not

a symmetry operation of the lattice symmetry (holohedry), but

maps only a part of the two twin-related lattices upon each

other, thus forming a common sublattice (‘coincidence-site

lattice’ or ‘twin lattice’) of lattice index [ j] = �m = Vtwin/Vcrystal

> 1 ( j or m is the volume ratio of the primitive unit cells of the

twin lattice and of the original ‘untwinned’ crystal lattice,

Hahn & Klapper, 2003, p. 417). Since the translation group of

this sublattice is a subgroup of the single-domain lattice,

Friedel (1926) has coined the term ‘twinning by reticular

(lattice) merohedry’ (‘macles par mériédrie réticulaire’).

Regarding the coincidence and overlap of twin-related

X-ray reflections, there is an essential difference between

twins by (strict) merohedry (� = 1) and twins by reticular

merohedry (� > 1). For �1 twins, because of the complete

coincidence of the two crystal lattices, all reciprocal-lattice

points of one crystal coincide with reciprocal-lattice points of

its twin-related counterpart. In contrast, for twins by reticular

merohedry (� > 1) the reciprocal lattices of the twin partners

overlap only partially. Their diffraction patterns can be

described in two ways:

(a) In terms of the unit cells of the two twin partners

[domain states D(I) and D(II)] with basis vectors a1, b1, c1 and

a2, b2, c2 and transformation (a2, b2, c2) = (a1, b1, c1) � T

(matrix notation, T = 3 � 3 transformation matrix of the twin

operation). The twin-related reflection indices h1k1l1 and

h2k2l2 are transformed accordingly: (h2k2l2) = (h1k1l1) � T .

Since T is not a symmetry operation of the lattice, it leads to

integer as well as to fractional indices h2k2l2. Three integer
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2 Representative twin operation m0(110).
3 Note that this illustration does not require crystals to exhibit planar (habit)
faces and complete face forms. It is applicable to crystals of any (also
spherical) shape to be studied by X-ray diffraction. This is shown in Section
2.3, p. 336, of Klapper & Hahn (2010).



indices represent ‘coincident’ (overlapping) reflections h1k1l1
and h2k2l2 of D(I) and D(II), whereas the occurrence of at

least one fractional index4 of h2, k2 or l2 indicates that this

reflection is ‘absent’, i.e. there is no reflection h2k2l2 coinciding

with reflection h1k1l1 of domain D(I). The latter are called

‘single’ reflections. Similarly, by the inverse transformation

(h1k1l1) = (h2k2l2)� T �1 the same set of coincident reflections

h1k1l1/h2k2l2 as before is obtained. The single reflections,

however, are now h2k2l2 of domain D(II).

(b) In terms of the �m cell of the coincidence lattice with

basis vectors am, bm, cm. The basis transformations from the

two twin-related unit cells of D(I) and D(II) are given by:

(am, bm, cm) = (a1, b1, c1) � M1 and (am, bm, cm) = (a2, b2, c2)

� M2 [M1 andM2 are 3 � 3 matrices with determinant m].

The corresponding transformations of reflection indices are

(HKL) = (h1k1l1) � M1 and (HKL) = (h2k2l2) � M2.

Reference to this coincidence-lattice coordinate system has

the great practical advantage that all coincident and single

reflections of both domain states D(I) and D(II) appear with

integer indices HKL. There are, however, ‘extinctions’ of

reflections of both domain states D(I) and D(II). These can be

derived from the above inverse index transformations (h1k1l1)

= (HKL)� M1
�1 for D(I) and (h2k2l2) = (HKL)� M2

�1 for

D(II). These transformations lead to both integer and frac-

tional indices h1k1l1 and h2k2l2. Those HKL leading to integer

hkl are ‘non-extinct’ (present), whereas those HKL leading to

fractional hkl are ‘extinct’. Note that these reflection condi-

tions (‘non-extinction conditions’, in the following abbre-

viated as NOC) are different for D(I) and D(II).

Applying the NOC of (b) above to �m reticular twins, four

different types of reflections HKL, based on the coincidence-

lattice cell am, bm, cm, can be distinguished with respect to their

coincidence and extinction behaviour:

(i) the reflection HKL fulfils simultaneously the NOC of

D(I) and D(II): both twin-related D(I) and D(II) reflections

are non-extinct, i. e. coincident (superimposed);

(ii) the reflection HKL fulfils the NOC only for D(I): the

reflection is extinct (absent) in D(II), i.e. HKL is a ‘single’

D(I) reflection;

(iii) the reflection HKL fulfils the NOC only of D(II): the

reflection is extinct (absent) in D(I), i.e. HKL is a ‘single’

D(II) reflection;

(iv) the reflection HKL does not fulfil the NOC of either

D(I) or of D(II): HKL is (‘doubly’) extinct (absent) in D(I) as

well as in D(II).

It is of interest to present the relative frequencies of the

four coincidence cases (i)–(iv) above as a function of the twin

index m (see Table 1). Note the strong reduction of the

coincidences (i) and the strong increase of the doubly extinct

reflections (iv) with increasing index m. The latter extinct

reflections (iv) are ‘non-space-group extinctions’. These

strange absences are an indication of the presence of twins by

reticular merohedry and a help in determining the twin law.

Note that these considerations apply only if the diffraction

pattern is evaluated on the basis of the coincidence-site lattice

providing integer reflection indices HKL for all coincidence

cases (i)–(iv). A first indication of these ‘non-space-group

extinctions’ was given by Buerger (1960, ch. 5).

In the present paper we deal only with twins by reticular

merohedry which are possible for all lattice parameters of a

crystal system, i.e. which are not due to an accidental special fit

of the lattice parameters. These are twins that preserve the

orientation of the three-, four- or sixfold symmetry axis, with a

twin reflection plane m parallel or a twofold twin axis normal

to the main axis [for rhombohedral crystals also with the twin

plane m normal to the (odd) threefold axis]. In these cases the

(partial) lattice coincidence is possible for any value of c/a. For

cubic crystals these conditions apply to the preservation either

of a fourfold symmetry axis (similar to the tetragonal �5

twins) or of a threefold axis. The latter case corresponds to the

cubic spinel law and is treated in x4. There are only a few

known cases of twinning by exact reticular merohedry (‘exact’

in contrast to only ‘approximate’ partial superposition of the

lattices of the twin domains: twinning by ‘reticular pseudo-

symmetry’). The most important twin cases are the following:

(a) Obverse/reverse �3 twins (‘spinel twins’) of rhombo-

hedral and cubic crystals (cf. Hahn & Klapper, 2003, p. 406 &

407). These very frequent and important �3 twins are treated

in detail in xx3 and 4 below.

(b) Twins of cubic crystals with any twin reflection plane

m0(hkl) or any twofold twin axis 20[uvw]. The twin index is

� = h2 + k2 + l2 or � = 1
2(h2 + k2 + l2) and � = u2 + v2+ w2 or

� = 1
2(u2 + v2 + w2), if the square sum is even (cf. Hahn &

Klapper, 2003, pp. 417–419). A special case is the spinel twin

with twin mirror plane m0(111) and/or twofold twin axis

20[111], case (a) above.

(c) Twins of tetragonal crystals with twin mirror planes

of type (hk0) or twofold twin axes [uv0] and twin index

� = h2 + k2 or � = 1
2(h2 + k2) and � = u2 + v2 or � = 1

2(u2 + v2).

The smallest lattice index of this kind of twins, � = 5, is

provided by twin mirror planes m0(120) and m0(310) or

twofold twin axes 20[210] and 20[130]. Examples are given in x5

below.

(d) Twins of hexagonal crystals with twin mirror planes

of type m0(hk0) or twin axes 20[uv0] and twin index
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Table 1
Relative frequencies of the four coincidence cases (i)–(iv) for the general
�m twins and the specific �3, �5 and �7 twins treated in this paper.

For each twin case the sum of all fractions is 1.

Coincidence cases �m �1 �3 �5 �7

(i) Coincidence pair 1/m2 1 1/9 1/25 1/49

(ii) Single reflections
of domain D(I)

(m � 1)/m2 0 2/9 4/25 6/49

(iii) Single reflections
of domain D(II)

(m � 1)/m2 0 2/9 4/25 6/49

(iv) Doubly extinct
reflections

(m � 1)2/m2 0 4/9 16/25 36/49

4 In some cases of reticular merohedral twins certain indices are always integer,
e.g. for the tetragonal �5 and hexagonal �7 twins which preserve the
tetragonal or hexagonal axis. Here the index l is always integer (cf. xx5 and 6).



� = h2 + hk + k2 or 1/3(h2 + hk + k2) and � = u2
� uv + v2 or

1/3(u2
� uv + v2). The smallest lattice index, � = 7, is obtained

for twin mirror planes m0(1230) and m0(5410) or twofold twin

axes 20[210] and 20[450]. This case is treated in x6. A real

example of this twin type, however, is not known.

2.2. X-ray intensities and face-form eigensymmetries

As shown above, the diffraction record of a crystal twinned

by reticular merohedry contains coincident (superimposed)

twin-related reflections [case (i) above] and single reflections

[cases (ii) and (iii) above], the intensities of which may or may

not be influenced by the twinning. The single reflections are

always influenced by the twinning because the volume of the

twin partner involved is only a fraction of the total twin

volume. This allows one to determine the volume fractions of

the two twin domains D(I) and D(II). The intensity features of

the twin-related superimposed reflections (i) follow the same

rules as given in the previous paper on �1 twins (Klapper &

Hahn, 2010). For these superimposed reflections two cases

may occur [cf. twin diffraction cases A and B in x1, (iii) above]:

(a) If the twin element belongs to the oriented eigensym-

metry of the corresponding face form {hkl}, the structure-

factor moduli of the twin-related superimposed reflections hkl

and h0k0l0 are symmetrically equivalent under the point group

of the crystal and thus are equal, even including anomalous

scattering (twin diffraction case A). The intensities of these

superimposed reflections are independent of the volume ratio

of the twins.

(b) If the twin element does not belong to the oriented

eigensymmetry of the face forms {hkl} and {h0k0l0}, the structure

factors of the superimposed reflections hkl and h0k0l0 are not

equivalent and, hence, their moduli are not equal (diffraction

case B). These reflections are further subdivided into those

with different geometric structure factors (diffraction case B1)

and those forming Bijvoet sets (diffraction case B2).

Thus, for twins by reticular merohedry, with respect to

diffraction intensities five groups of reflections are distin-

guished: superimposed equivalent reflections (i.e. not sensitive

to the twin ratio, diffraction case A), superimposed non-

equivalent reflections with different geometric structure-

factor moduli (case B1), superimposed non-equivalent but

‘opposite’ reflections with different anomalous-scattering

contributions (Bijvoet sets, case B2) [all of type (i) in Table 1]

and non-superimposed (‘single’) reflections [types (ii) and (iii)

in Table 1]. In addition, unusual ‘non-space-group absences’

occur [type (iv) in Table 1]. For non-symmorphic space groups

these unusual absences may be even more complicated by

regular extinctions due to unit-cell centring, screw axes and

glide planes. This is discussed in xx3.5, 4.2, 5.4 and 6.4.

3. Obverse/reverse (spinel) R3 twins of rhombohedral
crystals

3.1. General remarks on R3 twin laws

The obverse/reverse �3 twins of rhombohedral and cubic

crystals, the latter usually called spinel twins, are by far the

most frequent ‘twins by reticular merohedry’.5 Usually only

two �3 twin laws are considered, one rotation twin with the

twofold twin axis parallel to the threefold symmetry axis and

one reflection twin with the twin reflection plane perpendi-

cular to the threefold symmetry axis (both laws being identical

for centrosymmetric point groups). Closer group-theoretical

inspection, however, has revealed that there are four �3

obverse/reverse twin laws: one further twofold rotation twin

2[210] and one further reflection twin m(1010), perpendicular

to [210] (hexagonal axes).

All four twin laws are different (i.e. not ‘alternative’) only

for the rhombohedral point group 3 (order 3), i.e. the trigonal

point group 3 based on a rhombohedral lattice. For the
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Figure 1
Twin intergrowth of ‘obverse’ and ‘reverse’ rhombohedra of rhombohe-
dral FeBO3 (point group 32/m). (a) ‘Obverse’ rhombohedron with four of
the 12 alternative twin elements. (b) ‘Reverse’ rhombohedron (twin
orientation). (c) Interpenetration of both rhombohedra, as observed in
penetration twins of FeBO3. (d) Idealized skeleton of the six components
(exploded along [001] for better recognition) of the ‘obverse’ orientation
state shown in (a). The components are connected at the edges along the
threefold and the twofold eigensymmetry axes. The shaded faces are
{1010} and (0001) coinciding twin reflection and contact planes with the
twin components of the ‘reverse’ orientation state. Parts (a) to (c)
courtesy of D. Götz et al. (2012); after Hahn & Klapper (2003, p. 406).

5 The rhombohedral �3 twins treated here are ‘twins by reticular merohedry
with parallel threefold axes’. They are thus independent of the c/a ratio
(hexagonal axes) or the rhombohedral angle � (rhombohedral axes) and can
occur in any rhombohedral crystal. Twins ‘with inclined threefold axes’ depend
on the axial ratio or on �. Both types have been derived by Grimmer (1989b).



rhombohedral groups 3, 32 and 3m (order 6) the two rotation

and the two reflection twin laws merge in different ways into

two twin laws each, and for point group 32=m all four twin

laws coalesce into one. Details of these 11 �3 twin laws, their

cosets (sets of alternative twin operations), their theoretical

background and their relation to the merohedral �1 twin laws

of the trigonal point groups are presented in Appendix A.

3.2. General remarks on rhombohedral and hexagonal
coordinate axes

Rhombohedral crystals can be described by two coordinate

systems (each in two settings, ‘obverse’ and ‘reverse’) as

follows:

(a) ‘Rhombohedral axes’ (a = b = c, � = � = �) with a

primitive rhombohedral unit cell and, hence, without any

integral reflection conditions. The two settings of this coordi-

nate system correspond to two different orientations of the

rhombohedron with respect to the hexagonal unit cell.

(b) ‘Hexagonal axes’ (a = b 6¼ c, � = � = 90�, � = 120�) with

the R-centred triple hexagonal cell. This cell can occur in two

settings: ‘obverse’ setting with lattice points 0, 0, 0; 2/3, 1/3, 1/3;

1/3, 2/3, 2/3 and integral reflection condition �h + k + l = 3N,

and ‘reverse’ setting with lattice points 0, 0, 0; 1/3, 2/3, 1/3;

2/3, 1/3, 2/3 and integral reflection condition h � k + l = 3M

(N, M integers).

The two settings are related either by a 180� rotation

around the threefold symmetry axis, 2[111] (rhombohedral) or

2[001] (hexagonal) (cf. Fig. 1), preserving the handedness of

the basis vectors, or by a reflection through the plane normal

to the threefold axis, m(111) (rhombohedral) or m(0001)

(hexagonal), reversing the handedness of the basis vectors.

The basis-vector transformations between these settings are as

follows (‘obverse’ basis vectors a, b, c, ‘reverse’ basis vectors

a0, b0, c0):

Hexagonal axes:

a0 ¼ �a; b0 ¼ �b; c0 ¼ þc ð180� rotation around ½001�Þ

a0 ¼ þa; b0 ¼ þb; c0 ¼ �c ½reflection across mð0001Þ�

Rhombohedral axes:

a0 ¼ þ1=3ð�aþ 2bþ 2cÞ a0 ¼ �1=3ð�aþ 2bþ 2cÞ

b0 ¼ þ1=3ð2a� bþ 2cÞ b0 ¼ �1=3ð2a� bþ 2cÞ

c0 ¼ þ1=3ð2aþ 2b� cÞ c0 ¼ �1=3ð2aþ 2b� cÞ

ð180�rotation around ½111�Þ ½reflection across mð111Þ�:

These two transformations will be used in the subsequent

section for the derivation of the �3 reverse/obverse twins. The

transformations between the primitive rhombohedral cell and

the triple hexagonal cell and vice versa are given by Arnold

(2002) in Table 5.1.3.1 (p. 81) and Fig. 5.1.3.6 (p. 84).

3.3. Description of rhombohedral obverse/reverse twins by
hexagonal axes

Spinel twins occur frequently in rhombohedral crystals with

a calcite structure, for example as growth twins in calcite

CaCO3, iron borate FeBO3 (Kotrbova et al., 1985; Klapper,

1987), aluminium oxide Al2O3 (corundum, sapphire) (Wallace

& White, 1967). The point group of these crystals is the

(centrosymmetric) holohedral point group of the rhombohe-

dral lattice 32=m (order 12), the twin composite symmetry is

6/m2/m2/m (order 24, supergroup of index [2]) and the twin-

ning can be described by any of the 12 alternative twin

operations of the coset (cf. Hahn & Klapper, 2003, p. 406),

among which the following are the most illustrative ones:

‘twofold axis [001]’, ‘reflection plane (0001)’, ‘twofold axis

[210]’ and ‘reflection plane (1010)’ (hexagonal axes), cf.

Appendix A. These twin elements, each of which transforms

an obverse into a reverse rhombohedron and vice versa, are

shown in Fig. 1. The lattices of the two twin domains are only

partially coincident and form a twin lattice (coincidence-site

lattice) which is a (diluted) hexagonal sublattice of index

� = 3. The reciprocal lattice of the twin is a hexagonal

superlattice of index 3.

The face forms, the twin elements and the reflections

modified or not modified by the twinning are independent of

the description of the rhombohedral lattice by rhombohedral

or hexagonal axes (cf. x3.2). An additional feature arises due

to the partial �3 lattice coincidence: there occur two types of

reflections, superimposed and single, which are determined by

the (integral) reflection conditions of the obverse and reverse

settings of the rhombohedral lattice (only if referred to hex-

agonal axes): �h + k + l = 3N for the obverse and h0 � k0 + l0 =

3M (N, M integers) for the twin-related reverse setting. If a

pair of twin-related reflections hkil and h0k0i0l0 obeys both

conditions simultaneously, both reflections are superimposed,

either with equal or with different F moduli (depending upon

whether the reflections are equivalent or not). If only one of

these conditions is obeyed, only one of the two twin-related

reflections is ‘present’, the other ‘absent’ (‘single’ reflection).

If none of the conditions is obeyed for a hkil/h0k0i0l0 pair, both

reflections are ‘absent’ (‘doubly extinct’, cf. x2.1 and Table 1).

The distribution of the coincidence cases ‘superimposed’,

‘single’ and ‘doubly extinct’ in reciprocal space is, assorted in

layers normal to the threefold symmetry axis, presented in

Table 2.

In all reciprocal-lattice planes with l = 3M (this includes the

plane l = 0) there occur no single reflections. There are twin-

related coinciding (superimposed) present reflections of both

domain states and reflections absent (‘doubly extinct’) in both

states. In these 3M layers reflections hkil/h0k0i0l0 with �h + k

and h0 � k0 = 3N are both present and superimposed

(diffraction case B1), whereas reflections with �h + k 6¼ 3N

are absent for both twin domains. Reciprocal-lattice planes

with l 6¼ 3M contain only single and ‘doubly extinct’ reflections,

but no superimposed present reflections hkil/h0k0i0l0.

In the following, the coincidence behaviour is differentiated

with respect to the various types of twin-related reflection sets.

This can be easily derived by consideration of the oriented

eigensymmetries of the corresponding face forms (Table 3, for

the rhombohedral holohedry 32=m): the reflections are coin-

cident (superimposed) if the twin element is part of the

eigensymmetry of the corresponding face form, they are

‘single’ if it is not (except for the special values of h, k, l

obeying the conditions of subcolumn 5 in Table 3). The spinel
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twin elements belong to the eigensymmetries of forms {hh2hl},

{hki0}, {h0h0}, {hh2h0} and {000l} (hexagonal axes, column 1),

i.e. these forms are the same in the untwinned and the

composite point group. The twin-related reflections of these

types always either fulfil or do not fulfil simultaneously the

obverse and reverse ‘non-extinction’ conditions given in

column 5, i.e. they are either both ‘doubly present’ (super-

imposed) or ‘doubly extinct’. For the holohedry 32=m (lattice

symmetry) the F moduli of these twin-related superimposed

reflections are equal, i.e. their intensities are not affected by the

twinning (diffraction case A). Face forms {hkil} and {h0hl},

however, are different in the untwinned and the composite

symmetry (bold print in Table 3) because the twin element is

not part of the ‘untwinned eigensymmetry’. The reflections of

these forms are single, except for the special h; k; l combina-

tions (which include all reflections of orders�3,�6 etc.) given
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Table 3
Obverse/reverse (spinel) �3 twins of rhombohedral crystals with holohedral point group 32/m: types of reflections in hexagonal and rhombohedral
indices; corresponding face forms in the untwinned and the twin composite point group; conditions for coincidence (i.e. simultaneous non-extinction) of
twin-related reflections.

Face forms (reflection sets) that are different in the untwinned and the composite symmetry are printed in bold face. The corresponding diffraction cases B1 and A
[different and equal F moduli, see x1 point (iii)] are given in column 7. The entry ‘S + B1’ in column 7 indicates that these reflection sets are ‘single’ if the conditions
of columns 5 and 6 are not fulfilled and ‘coincident’ (diffraction case B1) if the conditions are fulfilled.

Types of reflections†
Untwinned crystal Spinel twin

Condition for coincidence (‘doubly present’)
of both domain states

Hexagonal
axes

Rhombohedral
axes

point group
32/m

composite symmetry
6/m2/m2/m‡

Hexagonal
axes

Rhombohedral
axes

Twin diffraction
case

hkil hkl Ditrigonal scalenohedron Dihexagonal dipyramid �h + k = 3N and l = 3M h + k + l = 3N S§ + B1

h0hl hhl Rhombohedron Hexagonal dipyramid h = 3N and l = 3M 2h + l = 3N S§ + B1

hh2hl hk(2k � h) Hexagonal dipyramid Hexagonal dipyramid Any value of h and l = 3M Any value of h, k A

hki0 hk(hþ k) Dihexagonal prism Dihexagonal prism �h + k = 3N Any value of h, k A

h0h0 hh2h Hexagonal prism Hexagonal prism h = 3N Any value of h A

hh2h0 0hh Hexagonal prism Hexagonal prism Any value of h Any value of h A

000l hhh Pinacoid Pinacoid l = 3M Any value of h A

† For full reflection sets see Table 10.1.2.2 in Hahn & Klapper (2002). ‡ For the hexagonal composite symmetry only ‘hexagonal axes’ apply. § These ‘single’ reflections can be
considered as B1 diffraction cases with one of the two F moduli exactly zero.

Table 2
The three types of coincidences of two rhombohedral reciprocal lattices, related by a twin rotation of 180� around the common threefold symmetry axis
or by a twin mirror plane normal to this axis: coincident reflections, coincident absences and ‘single’ reflections.

Both reciprocal lattices are referred to the same coordinate system (obverse, domain I) with one hexagonal reflection condition�h + k + l = 3N, i.e. they are treated
as reflections hkil (domain I) and hkil or hkil (domain II). The coincidence types are described in hexagonal axes (a) and rhombohedral axes (b). For
‘rhombohedral axes’ integer indices hkl and fractional indices hf

0, kf
0, lf
0 are used which correspond to non-extinct and extinct indices hkil in ‘hexagonal axes’. Note

that h + k + l = h0 + k0 + l0 for 20[111] and h + k + l = �(h0 + k0 + l0) for m0(111). This holds for integer as well as for fractional indices.

Reciprocal-
lattice planes
? threefold axis

Coincident non-extinct
(|F | 6¼ 0) reflections

Coincident extinct
(|F | = 0) reflections

‘Single’ reflections
(coincidence of |F | 6¼ 0
with |F | = 0)

(a) Hexagonal axes

hkil, l = 3N hkil
�hh �kk�iil

�
� hþ k ¼ 3M

hkil
�hh �kk�iil

�
� hþ k 6¼ 3M

—

hkil, l = 3N + 1 — hkil
�hh �kk�iil

�
� hþ k ¼ 3M

hkil
�hh �kk�iil

�
� hþ k ¼ 3M 	 1†

hkil, l = 3N + 2 — hkil
�hh �kk�iil

�
� hþ k ¼ 3M

hkil
�hh �kk�iil

�
� hþ k ¼ 3M 	 2†

(b) Rhombohedral axes

hkl, hþ kþ l ¼ 3N hkl

h0k0l0

�
� hþ kþ l ¼ 3N

— —

hkl, hþ kþ l ¼ 3N þ 1 — — hkl: integer indices,
h0f; k0f; l0f : fractional indices‡

hkl, hþ kþ l ¼ 3N þ 2 — — hkl: integer indices,
h0f; k0f; l0f : fractional indices‡

† The minus sign defines the single reflections of domain I (obverse), the plus sign those of domain II (reverse). ‡ The fractional indices are hf
0 = �h + 2(3N + q)/3, kf

0 = �k
+ 2(3N + q)/3, lf

0 = �l + 2(3N + q)/3 with q = 1 or 2.



in subcolumn 5 which are ‘doubly present’. These special

superimposed reflections are not symmetrically equivalent in

the untwinned symmetry and thus have different F moduli, i.e.

their intensities are affected by the twinning with diffraction

case B1.

In a simplifying view one could consider the obverse/

reverse twins of rhombohedral crystals formally as �1 mero-

hedral twins with a hexagonal lattice and the ‘single’ reflec-

tions as the superposition of two twin-related reflections, one

of which has an F modulus exactly zero. In this approach single

reflections would appear as diffraction case B1 and two absent

superimposed twin-related reflections formally as diffraction

case A. This latter interpretation, however, is of no practical

significance with respect to X-ray intensities.

3.4. Description of obverse/reverse twins by rhombohedral
axes

In the rhombohedral reference system there are no integral

absences. Thus we speak here only of ‘single’ and

‘superimposed’ reflections, cf. Table 2. As is shown in Fig. 1,

the spinel twin law maps the obverse rhombohedron onto the

reverse one and vice versa. This corresponds to the transfor-

mation of the obverse into the reverse rhombohedral coor-

dinate system. The rhombohedral Miller indices (hkl)obv of

domain state D(I) are transformed into the twin-related

indices (h0k0l0)rev of state D(II) and vice versa by:

Rotation twin 2½111� Reflection twin mð111Þ

h0 ¼ 1=3ð�hþ 2kþ 2lÞ h0 ¼ �1=3ð�hþ 2kþ 2lÞ

k0 ¼ 1=3ð2h� kþ 2lÞ k0 ¼ �1=3ð2h� kþ 2lÞ

l0 ¼ 1=3ð2hþ 2k� lÞ l0 ¼ �1=3ð2hþ 2k� lÞ:

With h + k + l = m this is simplified to

h0 ¼ �hþ 2m=3 h0 ¼ h� 2m=3

k0 ¼ �kþ 2m=3 k0 ¼ k� 2m=3

l0 ¼ �l þ 2m=3 l0 ¼ l � 2m=3:

These transformations are identical with their inverses D(II)

! D(I). Thus, in rhombohedral axes, reflections hkl with

m = h + k + l = 3M are coincident (superimposed). All others,

leading to fractional (non-existing) reflections h0k0l0, are single

(S). It is immediately clear that for the rhombohedral holo-

hedry 32/m reflections of the sets hkl (ditrigonal scaleno-

hedron) and hhl (rhombohedron) are superimposed for

n = 3N (forming diffraction case B1) and single for n 6¼ 3N,

whereas all reflections of the sets hk(2k � h) (hexagonal

dipyramid), (hkhþ k) (dihexagonal prism), hh2h (hexagonal

prism), 0hh (hexagonal prism) and hhh (pinacoid) are super-

imposed with their (non-zero) twin-related counterparts. For

the rhombohedral holohedry these latter sets of superimposed

reflections are symmetrically equivalent and thus are diffrac-

tion case A. For �3 twins of the rhombohedral merohedries

3m, 32, 3 or 3, however, these occur also as B1 or B2

diffraction cases (see x3.5 and Table 4).

The twin diffraction characteristics of the seven reflection

sets (face forms) of the rhombohedral holohedry 32/m are

presented in Table 3 in the hexagonal as well as in the

rhombohedral reference system.

3.5. Twin diffraction characteristics of rhombohedral crystals
with merohedral symmetry

So far only the obverse/reverse twins of the rhombohedral

holohedry 32=m have been considered. In this section,
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Table 4
The twin diffraction cases for the 11 obverse/reverse �3 twin laws of rhombohedral crystals: point group, hexagonal twin composite group, composite
group in black–white notation and twin diffraction cases for all seven reflection types (cf. Table 9d of Klapper & Hahn, 2010).

The indices of each reflection type are given in Bravais–Miller indices hkil for ‘hexagonal axes’ and below as Miller indices hkl for ‘rhombohedral axes’. The entries
‘S + B1’ in columns 4 and 5 indicate the presence of both sets of (first- and second-order) ‘single’ reflections and sets of superimposed twin-related (third-order)
‘doubly present’ reflections, whereby reflections with h + k + l = 3N are ‘coincident’ and those with h + k + l 6¼ 3N are ‘single’. The other reflection types (columns
6–10) consist only of superimposed ‘doubly present’ reflections (see x3.4).

Composite group

Twin diffraction cases for the seven different types of reflections (face forms),
for both hexagonal and rhombohedral axes

Point Composite (black–white hkil h0hl hh2hl hki0 h0h0 hh2h0 000l
group† group† notation) hkl hhl hk(2k � h) hk(hþ k) hh2h 0hh hhh

3 6 60(3) S + B1 S + B1 B1 B2 B2 B2 A
6 60(3) = 3/m0 S + B1 S + B1 B1 A A A B2
312 3120 S + B1 S + B1 B2 B1 A B2 B2
31m 31m0 S + B1 S + B1 A B1 B2 A A

3 6/m 60(3)/m0 S + B1 S + B1 B1 A A A A
312/m 3120/m0 S + B1 S + B1 A B1 A A A

32 622 60(3)220 S + B1 S + B1 B2 B2 A B2 A
62m 60(3)2m0 S + B1 S + B1 A A A A A

3m 6mm 60(3)mm0 S + B1 S + B1 A B2 B2 A A
6m2 60(3)m20 S + B1 S + B1 B2 A A A B2

32/m 6/m2/m2/m 60(3)/m02/m20/m0 S + B1 S + B1 A A A A A

† Details of the obverse/reverse �3 twin laws and their cosets are given in Appendix A.



obverse/reverse twinning in the four rhombohedral merohe-

dries 3m, 32, 3 and 3 is treated only in hexagonal indices. Since

these merohedries are also based on a rhombohedral lattice,

the coincidence (superposition) features are the same as for

the holohedry 32=m (Table 2 and columns 5 and 6 of Table 3).

Similarly, since the eigensymmetries of the face forms {hkil}

and {h0hl}6 do not contain the twin element for any rhombo-

hedral merohedry, the superimposed reflections of these sets

are always diffraction case B1. In contrast to 32/m, however, in

the merohedries 3m, 32, 3 and 3 the eigensymmetries of the

special forms {hh2hl}, {hki0}, {h0h0}, {hh2h0} and {000l} do or

do not contain the twin element and thus may exhibit

diffraction cases A, B1 or B2. The intensity features of twin-

related reflections in all 11 possible �3 twins of crystals with a

rhombohedral lattice are presented in Table 4. For the

rhombohedral lattice in the ‘hexagonal-axes description’,

however, the non-extinction conditions given in Table 3,

column 5, have – in addition – to be taken into account. These

have consequences only for the reflection sets {hkil} and

{h0hl}, which – besides having superimposed reflections of

diffraction case B1 – also contain ‘single’ reflections (S + B1).

Concerning the non-symmorphic space groups and their

extinctions, there are only two rhombohedral groups with

glide planes, R3c and R32/c, and three twin laws (cf. Appendix

A and Table 13):

3m! 6mm, twin operation 20[001]hex or 20[111]rh;

3m! 62m, twin operation m0(0001)hex or m0(111)rh;

3 2/m! 6/m2/m2/m, twin operation 20[001]hex = m0(0001)hex

or 20[111]rh = m0[111]rh.

With the c-glide reflection condition hhl, l = 2n and the �3

coincidence condition m = 2h + l = 3M the twin-related

reflection sets are (rhombohedral coordinates, see reverse/

obverse transformations in x3.4)

{hhl}$ {h0h0l0} = {�h + 2M, �h + 2M, �l + 2M}.

The twin-related coincident sets are of the same type and

thus subject to the same reflection condition l = 2n and l0 = �l

+ 2M = �2(n �M), also even, i.e. ‘non-extinct$ non-extinct’

and, for l = l0 = 2n + 1, ‘extinct$ extinct’. The case ‘extinct$

non-extinct’ does not occur.

3.6. Structure determination of obverse/reverse (spinel) twins
of rhombohedral crystals

In contrast to structure determinations of �1 twins (cf.

Klapper & Hahn, 2010, x3.2), for rhombohedral �3 spinel

twins some particular diffraction features have to be taken

into account. If single-crystal intensity data are collected in

rhombohedral indices based only on the obverse coordinate

system, the data set contains single reflections of, say, domain I

and superimposed reflections of domains I and II. The data set

is incomplete because the single reflections of domain II are

missing. Thus an (at least partial) data collection in the reverse

setting is advisable. These data now contain the single reflec-

tions of domain II and again the superimposed reflections of

domains I and II. The comparison of the intensities of the

‘single obverse’ and ‘single reverse’ data allows the determi-

nation of the volume ratio of domains I and II.

The same happens for the data collection in the hexagonal

coordinate system if the R absences (�h + k + l 6¼ 3M for the

obverse, h � k + l 6¼ 3N for the reverse setting) are taken into

account and excluded from the data collection. In this case it is

advisable to collect the intensity data without regard to any R

absences. This data set contains the single reflections of

domains I and II as well as the superimposed ones of both

domains. It also contains the (‘doubly coincident’) systematic

absences due to the simultaneous occurrence of the two R

extinction conditions. These ‘strange’ absences are character-

istic of the twin law and can be used for its determination.

Modern computer programs permit the determination of

crystal structures from the complete diffraction data of

twinned crystals, provided the twin law has been recognized

before. A program for the refinement of twin structures is

contained in the program package SHELXL97 (Sheldrick,

1997, 2008; Herbst-Irmer & Sheldrick, 1998). Other programs

for handling the diffraction data of twinned crystals are

TWINXLI (Hahn & Massa, 1997) and GEMINI (Bruker,

2005). The power of the program SHELXL for the refinement

of obverse/reverse �3 twins of rhombohedral crystals is

demonstrated by Herbst-Irmer & Sheldrick (2002) for two

complicated structures (space groups R3c and R3, the latter

combined with a �1 merohedral twin) and by Herbst-Irmer

(2006) in the monograph ‘Crystal Structure Refinement’. Other

examples are the structure determinations of obverse/reverse

twins of the aluminosilicate zeolite chabazite K by Yakubovich

et al. (2005), using SHELXL97 and TWINXLI, and of

Ba8Ru3.33Ta1.67O18Cl2 by Wilkens & Müller-Buschbaum

(1992), all with space group R3m. The latter is of particular

interest because structure determination and refinement were

successfully carried out using only the single reflections of the

larger domain, disregarding the overlapping reflections and

the reflections of the other domain. This indicates that in

suitable cases the structure of obverse/reverse twins can be

determined without particular twinning software. An example

of the use of GEMINI is the structure determination of a �3

twin of (NaLa2)NaPtO6 (space group R3c) by Davies et al.

(2003, especially ‘Supplementary material’). Further �3

structure determinations are quoted in Appendix A. A survey

of structure determination and refinement of obverse/reverse

twins is given by Herbst-Irmer (2006).

3.7. X-ray diffraction topography of obverse/reverse twins

Similar to the various kinds of �1 twins, obverse/reverse �3

twin domains cannot be visualized by optical birefringence.7

Usually these twins are recognized by their typical external

morphology (e.g. re-entrant edges) and etch features of the
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6 They are the same as those in Table 9, subtable (c) of Klapper & Hahn (2010)
for crystals with hexagonal lattices and �1 twin laws 2[001] and m(0001). This
is due to the fact that face forms are independent of the lattice type (hexagonal
or rhombohedral).

7 In principle, however, domains of �3 obverse/reverse reflection twins with
twin laws 3! 3m, 3! 6 
 3=m and 32! 62m can be studied by the reversal
of their optical rotation sense. The same applies to the corresponding trigonal
�1 twins.



surface, but this does not yield information about the internal

arrangement of the domains and twin boundaries. X-ray

topography, however, is a very powerful method to study these

domains and their distribution in a crystal. The most suitable

reflections for imaging the domains are those for which one of

the two twin-related reflections is extinct (|F | = 0), e.g.

reflections which do not simultaneously obey the R non-

extinction condition. An example is shown by the topographs

of a (0001) plate [or (111) in rhombohedral axes] of FeBO3

(calcite structure, space group R32/c, Figs. 2a and 2b). Using a

reflection coincident with both twin-related counterparts

provides a full image of both domains (Fig. 2c).

Obverse/reverse twins of the following crystals have been

studied by conventional X-ray topography (Lang technique;

Lang, 1999): corundum Al2O3, space group R32/c (Wallace &

White, 1967), and FeBO3, space group R32/c (Kotrbova et al.,

1985; Klapper, 1987, pp. 390–393; Götz et al., 2012). In all these

cases the obverse/reverse twin domains were visualized by

black-and-white contrast using extinct/non-extinct twin-

related reflections.

A study of the obverse/reverse �3 growth twinning of the

laser crystal NdxGd1�xAl3(BO3)4 (space group R32) by white-

beam synchrotron radiation topography is reported by Hu et

al. (1998). In this case a special diffraction feature of twin-

related reflections occurs: owing to the strong continuous-

wavelength spectrum of the synchrotron source, besides the

first-order reflection the higher-reflection orders (higher

harmonics) are also generated, i.e. the first-order hkl with

wavelength �, the second-order 2h2k2l with �/2, the third-

order 3h3k3l with �/3, all being superimposed onto the same

Laue topograph. This is shown for a topograph recorded in

first- and higher-order reflections N(0.1.1.5) in Fig. 4(b) of Hu

et al. (1998). For the first- and second-order reflections 0.1.1.5

and 0.2.2.10 only the reverse domain fulfils the reflection

condition h � k + l = 3N (here N = 2 and 4) and is imaged,

whereas the obverse domain is ‘extinct’ (|F | = 0, single

reflection). Both reverse and obverse reflection conditions are

simultaneously fulfilled for the third order 0.3.3.15 (N = 6,

diffraction case B1). Thus, in the Laue topograph of super-

posed harmonic reflections N(0.1.1.5) the obverse domain

appears with (comparatively) faint intensity.

4. Spinel R3 twins of cubic crystals

The term ‘spinel twin’ has been coined in mineralogy because

of the frequent occurrence of this twinning in natural cubic

spinels. There are four different twin laws, two of them

represented by the well known twin elements 2[111] and

m(111) and the other two by 2[211] and m(211). These four

twin laws, their cosets and their combinations in the five

cubic point groups are described in detail in Appendix A and

Table 5.

Spinel twins of cubic crystals are �3 twins of the same type

as the obverse/reverse twins of rhombohedral crystals

described in x3 and illustrated in Fig. 1, but with the following

differences: the lattice symmetry of the (untwinned) single

crystal is the cubic holohedry 4/m32/m instead of 32/m, and the

rhombohedral angle � is, because of symmetry, exactly 90�.

There are four threefold axes h111i and four planes {111} and,

correspondingly, four sets of axes h211i and planes m{211}

which can act as twin elements. Spinel twins mostly occur with

twin elements related to only one of the threefold axes h111i,

but combinations of twin elements related to two or more

h111i axes have also been observed, forming rather compli-

cated twin aggregates (multiple and high-order twins; Hahn &

Klapper, 2003, pp. 398 and 419). In the following we consider

only twins with the twin elements 2[111], m(111), 2[211] and/

or m(211).

Spinel twins frequently occur in crystals of the spinel

(MgAl2O4) type, cubic metals and alloys (cf. Hahn & Klapper,

2003, pp. 407 and 419, and references therein), diamond (e.g.

Yacoot et al., 1998; Machado et al., 1998), Si and Ge,

compound semiconductors with the sphalerite (‘zinc blende’)

structure (ZnS, GaAs, InP etc.), calcium fluoride CaF2 and in

some crystals with NaCl structure. Among the latter, crystals
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Figure 2
X-ray topographs (Mo K�1 radiation) of an obverse/reverse growth twin
of FeBO3 (calcite structure, space group R3m), grown from the vapour
phase by chemical transport. (0001) plate (diameter about 3.5 mm,
thickness 0.2 mm), cut close to the centre of the crystal. (a) ‘Single’
reflection {2202} (rhombohedron) of obverse domain I (domain II
‘extinct’); (b) ‘single’ reflection {2202} (rhombohedron) of domain II
(domain I ‘extinct’); (c) coincident reflection {2113} (hexagonal
dipyramid) with equal F moduli of domains I and II (no domain contrast,
diffraction case A). Arrows: diffraction vectors. In (a) and (b) the
domains appear by ‘black-and-white’ contrast. The dark contrasts in the
domains result from crystal defects. The straight contrast lines are
dislocations or dislocation bundles. Note that the twin boundaries do not
show diffraction contrast (except for a very faint contrast ending on the
re-entrant corner marked by a small arrow in (c), indicating a good
structural fit of the domains along their boundaries. The hexagonal
contrast feature in the centre of (c) results from the growth-sector
boundaries between the (0001) pinacoid and the {1101} rhombohedral
growth faces. Courtesy of D. Götz et al. (2012).



of the photographic materials AgCl and AgBr, precipitated

from aqueous solutions, very frequently exhibit multiple �3

twins (Bögels et al., 1999). The non-centrosymmetric crystals

with sphalerite structure (point group 43m) usually form twins

with twin law 2[111], which preserves the direction of the polar

[111] axis.

4.1. Splitting of cubic into rhombohedral face forms
(reflection sets)

The cubic spinel �3 twin laws lead to rhombohedral inter-

section symmetries and hexagonal reduced twin composite

symmetries (cf. Table 5). As a consequence, the twins must be

described and treated in the maximal rhombohedral subgroup

of their cubic point group, which is always of index 4 (cf. Fig.

10.1.3.2 on p. 796 of Hahn & Klapper, 2002). There are thus

four conjugate rhombohedral point groups of the same type

but different orientation, along the cubic directions [111],

[111], [111] and [111].

This group–subgroup decomposition of index [4] entails a

‘splitting’ into (up to four) rhombohedral face forms and/or a

reduction of the cubic site (face) symmetries (again by a factor

up to four). As a first example, the general form {hkl}cub with

site symmetry 1 of the cubic holohedry 4/m32/m (order 48) is

considered. It splits into four rhombohedral forms {hkl}rh,

{hkl}rh, {hkl}rh and {hkl}rh, each with site symmetry 1, of the

rhombohedral subgroup 32/m (order 12). These forms are

related to the ‘starting set’ {hkl}rh by the identity and the

twofold cubic axes along [100]cub, [010]cub and [001]cub. The

complete {hkl} sets of the five cubic and the five rhombohedral

general forms can be found on pp. 776–782 and 786–790 of

Hahn & Klapper (2002).

Furthermore, the general face forms of the rhombohedral

subgroups appear as one ‘basic’ and up to four ‘limiting’ forms,

depending on the special values of the Miller indices h; k; l.

Thus the cubic hexakisoctahedron {123}cub (48 faces) is split

into four rhombohedral forms {123}rh (hexagonal bipyramid

with h + k + l = 3k), {123}rh (dihexagonal prism with h + k + l

= 0), {123}rh (ditrigonal scalenohedron) and {123}rh (ditrigonal

scalenohedron), each with 12 faces, as shown in Fig. 3.

As a second example, the cube {h00}cub (six faces) with face

symmetry 4mm (order 8) in point group 4/m32/m is not split,

but occurs in 32/m as four coincident 90� rhombohedra {h00}rh

with the reduced face symmetry m (order 2), i.e. the ‘splitting’

is due to a reduction of the face symmetry by a factor 4. The

coincidence of these four split forms is due to the eigensym-

metry of the 90� rhombohedron, which contains the three

twofold axes h100i of the cubic supergroup. All other splitting

cases are in between these two examples, as shown in Table 6.

The ‘subgroup splitting’ of the cubic forms is explained in

detail in Appendix B, together with a complete list of all split

forms of the five cubic point groups (Table 15). It should be

emphasized that the ‘subgroup splitting’ explained above and
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Figure 3
Splitting of the cubic face form {123}cub (hexakisoctahedron, point group
4/m32/m, 48 faces) into four rhombohedral subforms (12 faces each) of
point group 32/m with their rhombohedral axes along [111]cub and
rhombohedral angle � = 90� (cf. Appendix B). (a) {123}rh (hexagonal
dipyramid), (b) {123}rh (ditrigonal scalenohedron), (c) {123}rh (ditrigonal
scalenohedron) and (d) {123}rh (dihexagonal prism), (e) combination of
these forms yields the cubic hexakisoctahedron. [Note that the central
distances of the faces are different for the four rhombohedral forms, but
equal in the combination (e).]

Table 5
Twin intersection and hexagonal twin composite groups of the 11 possible
[111] �3 cubic spinel twins.

For the details of the four �3 twin laws see Appendix A. For the twin
composite groups in black–white notation see Table 4.

Untwinned
cubic
point group

Rhombohedral twin
intersection group
(index [4])

Twin law
representatives
(cubic axes)

Hexagonal
twin composite
group

23 3 2[111] 6
m(111) 6
2[211] 312
m(211) 31m

2/m3 3 2[111] + m(111) 6/m
2[211] + m(111) 312/m

432 32 2[111] + 2[211] 622
m(111) + m(211) 62m

43m 3m 2[111] + m(211) 6mm
m(111) + 2[211] 6m2

4/m32/m 32/m 2[111] + m(111) 6/m2/m2/m
+ 2[211] + m(211)



in Appendix B is a pure group–subgroup problem, indepen-

dent of any application such as twinning, phase transitions or

crystal morphology.

4.2. Cubic R3 twins and their diffraction cases

The 11 �3 twin laws and their applications to cubic crystals

are very similar to those of rhombohedral crystals (cf. x3.1,

Appendix A and Table 5).

With respect to face forms (reflection sets), the spinel

twinning of cubic crystals of any cubic point group exhibits the

following features:

(a) There is no cubic face form {hkl}cub which is completely

mapped onto itself by a spinel-twin operation, i.e. no �3 twin

element is an eigensymmetry element of any cubic face form.

(b) The (up to four) rhombohedral subforms (reflection

sets) of one and the same cubic form usually exhibit different

twin diffraction cases S + B1, B1, B2 or A, depending on the

twin law, although all faces of the subforms are symmetrically

equivalent in the cubic supergroup and have equal F moduli.

This is illustrated in Table 7 for the split forms of the cubic

form {123}cub in point groups 4/m32/m! 32/m (cf. Fig. 3), 432

! 32 and 43m ! 3m. Another illustration of the different

diffraction cases of split forms is given for the centrosymmetric

rhomb-dodecahedron {0kk}cub, which occurs in all cubic

groups, in Table 14 of Appendix B.

(c) A special feature occurs for those cubic forms which are

centrosymmetric in the non-centrosymmetric cubic point

groups 432, 43m and 23, e.g. forms {0kk}cub (rhomb-dodeca-

hedron) and {h00}cub (cube). These split into pairs of ‘oppo-

site’ (morphologically inverted) rhombohedral subforms. For

some twin laws the two opposite forms of a pair are mapped

upon each other, thus forming B2 diffraction cases, because

they are – formally – not equivalent in the rhombohedral

subgroup. In the cubic supergroup, however, they are

equivalent, have equal F moduli and thus provide in reality

diffraction case A. This particular diffraction case is denoted

as A. It is discussed in detail in Appendix B and especially in

Table 14.

Thus, the various ‘rhombohedral’ subsets {hkl}rh of a cubic

reflection set {hkl}cub exhibit, despite being ‘cubically’
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Table 6
Spinel [111] twins in the cubic holohedry 4/m32/m: types of reflections with multiplicity and coincidence conditions in parentheses, corresponding
rhombohedral subface forms in the twin intersection and the reduced twin composite point groups with number of faces, and twin diffraction cases.

Face forms (reflection sets) that are different in the intersection and the composite symmetry are printed in bold. In column 4 ‘S’ refers to ‘single’ reflections for
n = h + k + l 6¼ 3N, ‘B1’ to coincident reflections for n = h + k + l = 3N. Note that in this centrosymmetric group the four spinel twin elements form one twin law
(cf. Appendix A and Table 5).

Face forms (types of reflections)
in point group 4/m32/m
(untwinned, P lattice)†

Subface forms in
intersection group
32/m along [111]

Subface forms in
reduced composite group
6/m2/m2/m‡

Twin
diffraction
case

{hkl} (48) (n = h + k + l = 3N) Ditrigonal scalenohedron (12) Dihexagonal dipyramid (24) S + B1

{hk(2k � h)} (n = 3k) Hexagonal dipyramid (12) Hexagonal dipyramid (12) A

{hk(hþ k)} (n = 0) Dihexagonal prism (12) Dihexagonal prism (12) A

{hhl} (24) (2h + l = 3N) Rhombohedron (6) Hexagonal dipyramid (12) S + B1

{hh 2h} (n = 0) Hexagonal prism (6) Hexagonal prism (6) A

{0kl} (24) (k + l = 3N) Ditrigonal scalenohedron (12) Dihexagonal dipryamid (24) S + B1

{0k2k} (n = 3N) Hexagonal dipyramid (12) Hexagonal dipyramid (12) A

{0kk} (12) (k = 3N) 120��� rhombohedron (6) Hexagonal dipyramid (12) S + B1

(0kk) (k any integer value) Hexagonal prism (6) Hexagonal prism (6) A

{hhh} (8) (h any integer value) Pinacoid (2) Pinacoid (2) A

{hh�hh} (h = 3N) 60��� rhombohedron (6) Hexagonal dipyramid (12) S + B1

{h00} (6) (h = 3N) 90��� rhombohedron (6) Hexagonal dipyramid (12) S + B1

† The various face forms, coincidence features and diffraction cases are the same for the cubic primitive (P), body-centred (I) and face-centred (F ) lattices (see text). For the I and F
centrings, however, their reflection conditions (h + k + l = 2N for I and all h; k; l either even or odd for F ) have to be additionally taken into account. ‡ For the hexagonal composite
symmetry only ‘hexagonal axes’ apply.

Table 7
Diffraction cases of the rhombohedral subforms {123}rh [n = 6 = 3k,
(bi)pyramids] {123}rh (n = 0, prisms), {123}rh (n = �2, scalenohedra/
trapezohedra/ditrigonal pyramids) and {123}rh (n = �4, scalenohedra/
trapezohedra/ditrigonal pyramids) of the cubic face form {123}cub for the
�3 twin laws 2[111]cub and m(111)cub of the cubic groups 4/m32/m, 432
and 43m.

Rhombohedral split
Twin diffraction case

Group!subgroup forms of {123}cub 2[111]cub m(111)cub

4/m32/m!32/m
(cf. Fig. 3)

1 hexagonal bipyramid A A
1 dihexagonal prism A A
2 ditrigonal scalenohedra S + B1 S + B1

432!32 1 trigonal bipyramid B2 A
1 ditrigonal prism B2 A
2 trigonal trapezohedra S + B1 S + B1

43m!3m 1 hexagonal pyramid A B2
1 ditrigonal prism B2 A
2 ditrigonal pyramids S + B1 S + B1



symmetry equivalent, quite different intensity relations of

twin-related reflections. The subsets {hkl}rh follow exactly the

rules given in x3 for the obverse/reverse twins of rhombohe-

dral crystals described in ‘rhombohedral axes’. In particular,

the index transformations given in x3.4 are also valid for the

subset relation {hkl} ! {h0k0l0} in the spinel twins of cubic

crystals.

The above coincidence and intensity features of twin-

related reflection sets, derived so far for cubic P lattices (� =

90�), are also valid for I- and F-centred cubic lattices, i.e. the

twin operation maps non-extinct reflections of domain state

D(I) upon non-extinct reflections of domain state D(II) and

vice versa. This is due to the fact that both the I- and the

F-centred cubic lattices can be based on (primitive) rhombo-

hedral lattices [rhombohedral angle � = 180� � arccos (1/3) =

109.47� for I and � = arccos (1/2) = 60� for F] with the

threefold axes of both domains along the cube diagonal [111],

and that the coincidence and diffraction cases of the diffrac-

tion record do not depend on the chosen reference system and

the value of the rhombohedral angle �.

Combining the �3 coincidence condition hþ kþ l = 3n

with the reflection conditions of the I lattice (h + k + l = 2m)

and the F lattice (h; k; l all odd or even), the following

conditions for the coincidence of twin-related non-extinct

reflection sets are obtained:

I lattice:

hþ kþ l ¼ 3� 2m ¼ 6m;

F lattice:

hþ kþ l ¼ 3ð2m� 1Þ ¼ 6m� 3 for all h; k; l odd

¼ 3� 2m ¼ 6m for all h; k; l even:

Space-group absences (glide planes, screw axes) of non-

symmorphic space groups may lead to extinct$non-extinct

coincidences of �3-related reflection sets. Since the list of

these cases is rather long, only a few illustrative examples are

given.

(i) Space group P21/a3, reflection set {0kl} (pentagon

dodecahedron), reflection condition k = 2n. �3 coincidence

condition k + l = 3m (plus cyclic permutations). Applying the

reverse/obverse transformation (x3.4) provides:

{0kl}$ {h0k0l0} = {2m, �k + 2m, �l + 2m}.

For m 6¼ 0 the {0kl} sets coincide with sets of type {h0k0l0}

which are not subject to the a-glide extinction, i.e. there are

�3 coincidences of extinct and non-extinct reflection sets

for k = 3(2N � 1) = 6N � 3 and non-extinct on non-extinct

ones for k = 6N. Similarly for diffraction set {h00} (cube):

h = 3(2N � 1) and h = 6N, respectively.

(ii) Space group P21/n3, reflection sets {0kl} (pentagon

dodecahedron) and {h00} (cube), reflection conditions k + l =

2n and h = 2n (plus cyclic permutations). This corresponds to

the I-lattice reflection condition: k + l = 6N and h = 6N for

non-extinct$non-extinct pairs and k + l = 6N � 3 and h = 6N

� 3 for extinct$non-extinct pairs.

(iii) Space groups with 21 and 42 screw axes along [100],

reflection sets {h00} (plus cyclic permutations). The reflection

condition h00: h = 2n leads for h = 6N to non-extinct$

non-extinct coincidence pairs, for h = 6N � 3 to extinct$

non-extinct pairs. For 41 and 43 screw axes with h00: h = 4n,

non-extinct$non-extinct pairs occur for h = 12N, extinct

$non-extinct pairs for all h = 12N � 4.

In cubic space groups only reflection sets of type {hhl}, {0kl}

and {h00} may be subject to space-group extinctions. The

above superposition of non-extinct with non-extinct or with

extinct sets is also valid for their rhombohedral subforms,

which always exhibit diffraction case S + B1 (see Table 15,

bold print in lines 4, 6, 10). Here the extinct$non-extinct

superposition is also a B1 diffraction case with one |F | = 0.

A particular situation arises for the special reflection sets

{hh2h}cub, {0k2k}cub and {0kk}cub which may also exhibit space-

group extinctions and contain the rhombohedral subsets

{hh2h}rh (n = 0, prisms), {0k2k}rh (n = 3k, pyramids) and

{0kk}rh (n = 0, prisms), respectively (see Table 15, lines 5, 7 and

8, subsets in normal print). These subsets completely coincide

with their �3-twin counterparts (no singles) and are either

symmetrically equivalent or ‘Bijvoet related’ and, thus,

provide either A or B2 diffraction cases. Twin-related reflec-

tion subsets of this kind with space-group extinctions provide

extinct$extinct and non-extinct$non-extinct pairs, but no

extinct$non-extinct pairs.

The splitting of cubic into rhombohedral face forms and the

twin diffraction cases for all rhombohedral subsets and for all

�3 spinel twin laws in the five cubic point groups are included

in Table 15 of Appendix B, together with remarks providing

more detailed information.

4.3. X-ray diffraction topography of cubic spinel twins

Cubic spinel twins have so far been observed only in crystals

with well known structures (metals, spinels, crystals with

diamond, sphalerite and NaCl structure). Thus, there exist no

structure determinations of spinel-twinned cubic crystals.

Conventional X-ray topography and white-beam synchrotron

topography, however, have quite often been applied to depict

the distribution of twin domains and twin boundaries within

the crystal. Examples are the studies of diamond (Machado et

al., 1998; Yacoot et al., 1998; Fritsch et al., 2005; Moore, 2009),

III–V and II–VI compound semiconductors (sphalerite struc-

ture) InP (Tohno & Katsui, 1986) and CdTe (Buck & Nagel,

1981), and natural spinels (Fregola et al., 2005; Fregola &

Scandale, 2007). In all these cases the twin domains were

visualized by black-and-white contrast of non-extinct/extinct

twin-related reflections. In some synchroton-radiation studies

domains ‘extinct’ in first- and second-order reflections (|F | = 0)

were depicted in the corresponding ‘non-extinct’ third-order

reflection (|F | 6¼ 0, cf. x3.7).

5. R5 twins of tetragonal crystals

In this section tetragonal ‘twins by reticular merohedry with

parallel c axes’ are treated. The smallest possible twin lattice
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index is � = h2 + k2 = 5 for a (120) reflection twin. These �5

twins are very rare, only a few cases are known (see references

below). Tetragonal twins of higher lattice index [e.g. �13 for

(230) or �17 for (140) reflection twins] are not known.

The �5 twins considered here do not depend on the

tetragonal axial ratio c/a, i.e. they are, in principle, possible in

any tetragonal crystal. This is due to the parallelism of the

tetragonal c axes of the twin partners and their coincidence

lattice (‘parallel c-axis twins’). Since the twin operation

preserves the tetragonal c axis, the twinning is a two-

dimensional phenomenon, i.e. the distribution of coincident,

single and extinct reflections is the same for all reciprocal

layers hk0, hk�1, hk�2 etc. This holds for all tetragonal point

groups. In contrast to ‘parallel c-axis twins’, twins by reticular

merohedry with inclined c axes are only possible for special

tetragonal c=a ratios. Possible theoretical cases have been

derived and listed by Grimmer (2003). Inclined twins with

exact coincidence, however, are not known,8 but approximate

coincidences (obliquity small but not equal to 0, ‘reticular

pseudomerohedry’; Friedel, 1926) exist.

Whereas the �3 twins of rhombohedral and cubic crystals,

treated in xx2 to 4, are quite frequent, the tetragonal �5 twins

are relatively rare. There are old indications of a (120)�5 twin

of a cubic garnet (Azruni, 1887; Tschermak & Becke, 1921),

but these findings have not been confirmed until now. The first

substantial report on this twinning was given by Panina

et al. (1995), who studied the �5 microtwinning of synthetic

Cr4+- and B3+-doped gehlenite Ca2Al(AlSi)O7 (point group

42m) by X-ray diffraction. Later it was shown by the X-ray

studies of Bindi et al. (2003) and of Gemmi et al. (2007) that

�5 twinning occurs in all mixed crystals of the binary melilite

solid-solution series [end members gehlenite Ca2Al(AlSi)O7

and åkermanite Ca2MgSi2O7]. It was also shown that this

twinning is due to a (120) pseudo-mirror plane of the melilite

structure. Tetragonal (120) �5 twinning was also observed in

crystals of SmS1.9 (space group P4/n; Tamazyan et al., 2000), in

rare-earth borides (space group P4/ncc; Oeckler et al., 2002)

and in the structure family X9Sb5O5 with X = Pr, Sm and Dy

(space group P4/n; Nuss & Jansen, 2007). In all these studies

the crystal structures were determined by X-ray diffraction of

twinned crystals.

5.1. Basis-vector relations

The �5 twin is based on the twin reflection planes m(120)

and m(310) or the twofold twin axes 2[210] and 2[130]

(parallel to the corresponding twin reflection planes). For the

two centrosymmetric groups the reflection planes and the

twofold axes represent the same twin law, for the five non-

centrosymmetric groups they lead to two different twin laws.

For an easier understanding of the twin-related superimposed

reflections of the m(120) twin, the basis vectors a2, b2, c2 of

twin partner 2 are in this section generated from the right-

handed basis vectors a1, b1, c1 of the starting partner 1 by the

twin reflection m(120) itself (Fig. 4), thus forming a left-

handed reference system. A treatment by right-handed basis

vectors a3, b3, c3, usually applied in structure determinations

(cf. Tamazyan et al., 2000; Nuss & Jansen, 2007) is presented in

Appendix C.

The right-handed basis vectors aT, bT, cT (red in Fig. 4) of the

�5 coincidence lattice are related to the right-handed a1, b1, c1

vectors (green) and left-handed a2, b2, c2 (blue) by

aT ¼ 2a1 � b1 ¼ 2a2 � b2

bT ¼ a1 þ 2b1 ¼ �a2 � 2b2

cT ¼ c1 ¼ c2

with the supercell parameters aT = 51/2a1 = 51/2a2, bT = 51/2b1 =

51/2b2, cT = c1 = c2 and VT = 5V1 = 5V2.

The reverse transformations are presented by

a1 ¼ ð2aT þ bTÞ=5; b1 ¼ ð�aT þ 2bTÞ=5; c1 ¼ cT

a2 ¼ ð2aT � bTÞ=5; b2 ¼ ð�aT � 2bTÞ=5; c1 ¼ cT:

The transformations between the basis vectors a1, b1, c1 (start)

and a2, b2, c2 are

a2 ¼ ð3a1 � 4b1Þ=5; b2 ¼ ð�4a1 � 3b1Þ=5; c2 ¼ c1

a1 ¼ ð3a2 � 4b2Þ=5; b1 ¼ ð�4a2 � 3b2Þ=5; c1 ¼ c2:

Note that the transformation a1, b1, c1$ a2, b2, c2 is reversible

(binary operation). Its determinant is �1, indicating the

change of handedness.
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Figure 4
Tetragonal lattices (a–b planes, common c axis pointing upwards) of twin
domain I (start domain, lattice points small circles, right-handed green
unit cell a1, b1, c1), of the �5 twin-related domain II (small crosses, left-
handed blue unit cell a2, b2, c2) and the �5 coincidence lattice (large black
points, right-handed red unit cell aT, bT, cT). The four alternative twin
reflection planes m0(120), m0(210), m0(310) and m0(130) are indicated by
dashed lines. The coordinate axes a2, b2, c2 of domain II (blue) are defined
by the reflection plane m0(120). The right-handed yellow unit cell a3, b3, c3

of domain II is obtained from a1, b1, c1 by a clockwise rotation of ’ =
2 arctan (1/2) = 53.13� around the tetragonal c axis (cf. Appendix C). This
cell is commonly used in structure determinations.

8 Exact lattice coincidence is, in principle, not possible because the coincidence
is not enforced by symmetry as it is in the case of ‘parallel c-axis’ twins. It may
occur, however, for a certain temperature if the thermal expansion is
anisotropic.



The basis-vector relations of the rotation twin 2[210] are

easily derived from the equations above: the transformations

for the basis vectors a1, b1 and a2, b2 remain the same, whereas

c2 is inverted: c2 = �c1 = �cT, thus forming a right-handed

basis.

5.2. Coincidence features of X-ray reflections

The transformations between the Miller indices (HKL) of

the (coincidence) supercell and the indices (h1k1l1) and

(h2k2l2) of the twin-related partners 1 (start) and 2 are (cf.

Fig. 5)

H ¼ 2h1 � k1 ¼ 2h2 � k2

K ¼ h1 þ 2k1 ¼ �h2 � 2k2

L ¼ l1 ¼ l2

h1 ¼ ð2H þ KÞ=5; k1 ¼ ð�H þ 2KÞ=5; l1 ¼ L

h2 ¼ ð2H � KÞ=5; k2 ¼ ð�H � 2KÞ=5; l2 ¼ L

h2 ¼ ð3h1 � 4k1Þ=5; k2 ¼ ð�4h1 � 3k1Þ=5; l2 ¼ l1

h1 ¼ ð3h2 � 4k2Þ=5; k1 ¼ ð�4h2 � 3k2Þ=5; l1 ¼ 12:

For the 2[210] rotation twin it is l2 = �l1 = �L.

Most of the transformations (h1k1l1) ! (h2k2l2) lead to

fractional indices in the twin-related domain II, i.e. these

reflections of the starting domain I are ‘single’ in the diffrac-

tion record. Only those special reflections of domain I, which

simultaneously obey the two coincidence conditions

3h1 � 4k1 ¼ 5h2 ¼ 5N and � 4h1 � 3k1 ¼ 5k2 ¼ 5M

ðN;M ¼ integers including 0Þ;

lead to integer indices (h2k2l2), i.e. reflections (h1k1l1) and

(h2k2l2) coincide. They have either equal or different F moduli,

representing diffraction cases A, B1 or B2. The two coin-

cidence conditions can be simplified by a mathematical

transformation into a single condition:

h1 þ 2k1 ¼ 5P ðwith P different from N and MÞ:

For the re-transformation (h2k2l2)! (h1k1l1) the coincidence

condition is the same:

h2 þ 2k2 ¼ 5P:

From the above coincidence conditions it follows that h1
2 + k1

2

= h2
2 + k2

2 = 5Q (Q integer9), i.e. they imply that the d values

of the twin-related reflections h1k11l and h2k2l2 are equal, a

necessary condition for coincidence.10 For example: twin-

related coincident reflections 29l and 67l: h1
2 + k1

2 = h2
2 + k2

2 =

85, Q = 17.

The coinciding reflections represent 1/25 of all reflections

(cf. Table 1). This is demonstrated in Fig. 5: within the cell

formed by the four reciprocal coincidence points 000, 120, 210,

310 (in terms of a1*, b1*) or 000, 500, 550, 050 (in terms of aT*,

bT*) there are four single points of twin domains I and II each,

one coincident point 000 and, with reference to aT*, bT*, 16

‘extinct’ reciprocal points (cf. Table 2).

5.3. Group-theoretical considerations, possible R5 twins

For the tetragonal holohedry 4/m2/m2m as well as

the centrosymmetric group 4/m, the intersection group of

the symmetries of the two twin partners is 4/m. The

reduced oriented composite symmetry (twin symmetry) is

4/m20/m020/m0, with m0 and 20 representing the following coset

of eight alternative twin reflection planes and twin axes (cf.

Fig. 4):

m0(120), m0(210), 20[120], 20[210] (second position of the

point-group symbol);

m0(310), m0(130), 20[310], 20[130] (diagonal reflection planes

and axes, third position).

These eight twin elements belong to the same coset and thus

represent one twin law. For the non-centrosymmetric groups,

however, the four twin reflection planes m0 and the four twin

axes 20 represent different cosets and thus different twin laws.

A special case is provided by point groups 4 and 42m/4m2

because their twins are reflection as well as rotation twins, i.e.
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Figure 5
Reciprocal tetragonal lattices (hk0 lattice planes) of twin domain I (start
domain, lattice points small circles) and of the �5 twin-related domain
II (small crosses). The reciprocal lattice of the (direct-space) �5
coincidence lattice is represented by the grid of small squares. The unit
cells, their handedness and their colours correspond to those of the direct
lattices in Fig. 4. In the square formed by the four reciprocal coincidence
points 000, 210, 310, 120 (in terms of a1*, b1*) or 000, 500, 550, 050 (in
terms of aT*, bT*) there are four ‘single’ points of twin domains I and II
each, one ‘coincident’ point 000 and, with reference to aT*, bT*, 16
‘extinct’ reciprocal points (cf. Table 1). These strange ‘non-space-group
extinctions’ are characteristic of the �5 twin law.

9 Q = (k1 � 2P)2 + P2 = (h1 � P)2/4 + P2 for coincidence condition h1 + 2k1 =
5P; similar for h2, k2 with h2 + 2k2 = 5P.
10 The d values of reflections hkl of a tetragonal crystal are given by 1/d2 =
(h2 + k2)/a2 + l2/c2. Since l2/c2 is the same for both twin-related reflections, the d
values are equal for equal h2 + k2.



their cosets contain two reflection planes and two twofold

axes. They are:

(1) m0(120), m0(210), 20[310], 20[130] (reduced composite

group 4m020) and

(2) 20[120], 20[210], m0(310), m0(130) (reduced composite

group 420m0).

The intersection and the reduced oriented composite

symmetries for the 12 possible tetragonal �5 twins are listed in

Table 8.

5.4. Intensity relations of superimposed twin-related reflec-
tions

In the following only those reflections of the two twin

partners are considered which are both present (i.e. not

‘single’) and superimposed. Again, the sets of symmetry-

equivalent reflections hkl are geometrically represented by

their corresponding face forms {hkl}.

Two types of face forms (reflection sets) are distinguished:

(a) Face forms {12l} and {31l} (more generally {h.2h:l} and

{3h:h:l} with h; l = 0, �1, �2, . . . ). They include the (di)-

tetragonal prisms {h.2h.0} and the pedion and pinacoid {00l}.

These forms have special orientations for the �5 twins,

because their oriented eigensymmetries contain, fully or partly

(‘splitting’ of forms, see below), the eight twin elements

m0(120), m0(310) and 20[120], 20[310] etc. and thus are, fully or

partly, mapped by a twin element upon themselves (diffraction

case A) or upon their acentric inverted forms (diffraction case

B2, see below).

(b) All other face forms {hkl}. Their oriented eigensymme-

tries do not contain a twin element, but they may be mapped

(fully or partly) upon another non-equivalent face form,

leading to diffraction case B1.

These cases are further discussed for the mono-axial groups

4, 4 and 4/m, and the poly-axial groups 422, 4mm, 42m and

4/m2/m2/m separately.

(i) Mono-axial groups 4, 4 and 4/m (Table 8):

Type (a) face forms:

Reflection twins m0(120) and m0(310). All mono-axial forms,

tetragonal pyramids and bipyramids {12l} and {31l}, prisms

{120} and {310}, as well as pedion and pinacoid {00l}, are

mapped upon themselves (Fig. 6). Thus, the twin-related

reflections have equal F moduli and exhibit diffraction case A.

Special cases are again the tetragonal disphenoids (‘tetra-

gonal tetrahedra’) {12l} and {31l} of point group 4, because for

this group the twin elements m0(120)/20[310] and m0(310)/

20[120] represent different twin laws (cf. their cosets in x5.3)

and form simultaneously reflection and rotation twins. For

m0(120) and 20[310] twins the disphenoid {12l} is mapped upon

itself (diffraction case A), whereas the disphenoid {31l} is

transformed into its inverted (‘opposite’) form (diffraction

case B2). Similarly for twin law m0(310)/20[120]: here the form

{31l} provides diffraction case A and form {12l} diffraction

case B2.

Rotation twins 20[120] and 20[310]. All mono-axial tetra-

gonal bipyramids {12l} and {31l} and prisms {120} and {310}

and the pinacoid {00l} are mapped upon themselves and form
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Table 8
Intersection point groups and (oriented) reduced composite groups of the
12 possible tetragonal �5 twins.

The twins in point groups 4 and 42m, as well as in the centrosymmetric groups
4/m and 4/m2/m2/m, are reflection as well as rotation twins, see text. Note that
the symbols of the (oriented) reduced composite groups refer to the tetragonal
axes aT, bT, cT of the coincidence lattice.

Tetragonal
point group

Twin intersection
group Twin law

Reduced composite
group

4 4 m0 4m0m0

20 42020

4 4 m0(120) / 20[310] 4m020

20[120] / m0(310) 420m0

4/m 4/m m0, 20 4/m20/m020/m0

422 4 m0 4m0m0

20 42020

4mm 4 m0 4m0m0

20 42020

4m2, 42m 4 m0(120) / 20[310] 4m020

20[120] / m0(310) 420m0

4/m2/m2/m 4/m m0, 20 4/m20/m020/m0

Figure 6
Face forms tetragonal pyramid {12l} and {31l}, projected along the
common tetragonal axis, and the coset of the four alternate �5 twin
reflection planes m0. These planes belong to the oriented eigensymmetries
of both forms, which are mapped upon themselves by this twinning. Thus,
the corresponding reflection sets {12l} and {31l} are superimposed with
their twin-related sets and have equal F moduli (diffraction case A). For
the tetragonal bipyramids, four additional twofold axes (parallel to the
traces of the mirror planes m0) belong to their eigensymmetry and the twin
law. These coincidence and intensity characteristics hold, more generally,
for the sets {h, 2h; l}and {3h; h; l} with h; l any positive or negative integer,
including the limiting cases of tetragonal prisms (l = 0) and pedion or
pinacoid (h = 0).



diffraction case A. The tetragonal pyramids and the pedion,

however, are mapped upon their opposite forms and thus

provide diffraction case B2 (Bijvoet sets). The special case of

point group 4 and its face form ‘tetragonal disphenoid’ is

already treated above under ‘reflection twins’.

Type (b) face forms:

The oriented eigensymmetries of all other mono-axial face

forms {hkl} of type (b) (which are the majority) do not contain

the twin elements m0(120) or 20[120]. These forms are either

single or mapped upon a non-equivalent form. The F moduli

of the corresponding reflection sets are different and the

reflection intensities depend on the volume ratio of the

twin partners (diffraction case B1). Examples are the twin-

related reflection sets {29l}/{67l}, {17l}/{55l} and {43l}/{05l} with

equal (h2 + k2) values. This is shown for the set {29l}/{67l} in

Fig. 8.

With regard to the following consideration of poly-axial

groups it is emphasized that all reflection sets {21l}, which are

related to sets {12l} [type (a) above, diffraction case A] by

reflection through (100) or (110) or by the corresponding

twofold rotations, do not have a coinciding twin-related

counterpart, they are always ‘single’ (cf. Fig. 7).

(ii) Poly-axial groups 422, 4mm, 42m and 4/m2/m2/m (Table

8):

In these groups ditetragonal face forms {hkl}ditetr occur. The

superposition and intensity relations of the corresponding

twin-related reflection sets can be reduced to the mono-axial

case above by splitting these forms into two ‘mono-axial’

subforms {hkl}mono (generated by the corresponding mono-

axial group) and {khl}mono, related to {hkl}mono by the reflec-

tion planes (100) or (110) or the corresponding twofold axes.

For example, the face form {12l}ditetr is split into the subforms

{12l}mono and {21l}mono, which behave as described above in (i):

the reflection subset {12l}mono [(type (a) above] is super-

imposed upon its twin-related equivalent subset (diffraction

cases A or B2), whereas the other subset {21l}mono and its twin-

related counterpart do not coincide and are each ‘single’. This

is shown in Fig. 7. It also holds for the special case of the

tetragonal scalenohedron {12l}ditetr of point group 42m, which

is split into the disphenoids {12l}mono [type (a), diffraction

cases A or B2] and {21l}mono (‘single’).

Similar relations hold for all other (general) ditetragonal

face forms of type (b) above: each subset {hkl}mono is super-

imposed upon its – now non-equivalent – twin-related coun-

terpart (diffraction case B1), whereas subset {khl}mono and

its twin counterpart do not coincide (‘single’ reflection sets);

this applies also to the (general) tetragonal scalenohedron

{hkl} of point group 42m. For example, consider the twin-

related face forms (reflection sets) {29l}ditetr and {67l}ditetr: the

subsets {29l}mono and {67l}mono are superimposed (cf. Fig. 8c),

whereas the subsets {92l}mono and {76l}mono are both ‘single’

(cf. Fig. 8d). These ditetragonal reflection sets are called

here ‘partly coincident’. The diffraction cases of twin-related

reflection sets for all tetragonal point groups are listed in

Table 9.

Finally, the effect of the I-lattice centring and of the

extinctions in non-symmorphic space groups is considered. It

should be noted that, owing to the inclination of the twin

elements m0 and 20 to the secondary symmetry elements of the

space group, only the ‘coincidence pairs’ (doubly coincident

reflections, first line in Table 1, large dots in Fig. 5) need to be

considered. The ‘single reflections’ of both domains (lines 2

and 3 in Table 1) exhibit the unmodified space-group extinc-

tions and can be used to determine the space group of the

(untwinned) crystal.
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Figure 7
Ditetragonal (bi)-pyramid {12l}ditetr, a combination of subforms{12l}tetr

(shaded) and {21l}tetr (white). Subset {12l}tetr is mapped upon itself by the
�5 twin elements (diffraction case A, cf. Fig. 6), whereas subset {21l}tetr

has no twin-related coinciding counterpart and is ‘single’ (‘partial
coincidence’).

Figure 8
(a), (b) Non-equivalent ditetragonal (bi)-pyramids {29l}ditetr (green) and
{67l}ditetr (red), both with h2 + k2 = 85, i.e. equal d values. (c) Mono-
tetragonal (bi)-pyramids {29l} (green) and {67l} (red). The twin elements
m0 do not belong to the eigensymmetries of these subforms, but map them
upon each other. Thus, the corresponding reflection subsets are coincident
but have different F moduli (diffraction case B1). (d) Associated mono-
tetragonal (bi)-pyramids {92l} (green) and {76l} (red). These subforms are
not mapped upon each other: the corresponding reflection subsets are
‘single’. This ‘partial coincidence’ holds for all general ditetragonal sets
{2h.9h.l} and {6h.7h.l} (except for the pedion/pinacoid, h = 0). The same
coordinate system is used for all reflections.



(a) Coincidence behaviour of �5 twins with an I lattice.

It can be shown that for two coincident twin-related reflection

sets {h1k1l1} $ {h2k2l2} (l1 = l2), h2 + k2 is even or odd

when h1 + k1 is even or odd. Thus, the I-reflection condition

h2 + k2 + l1 = 2m is obeyed if h1 + k1 + l2 = 2n is fulfilled,

i.e. the �5 coincidence lattice is also an I lattice, and a

superposition of I-lattice extinct and non-extinct reflections

does not occur.

(b) Screw axes 41, 42 and 43 have no effect because the

fourfold axis is preserved by the twinning, i.e. there is no

superposition of extinct and non-extinct reflections. The same

applies to the c-, a/b- and n-glide planes in I space groups (but

not to d-glide planes).

(c) In contrast, superposition of extinct and non-extinct

reflections occurs in the c-, a/b- and n-glide planes and the

21h100i and 21h110i screw axes of P space groups.

6. R7 twins of hexagonal and trigonal crystals

These twins and their derivation are very similar to the �5

twins of tetragonal crystals. The analogies and differences are

summarized as follows:

(i) The hexagonal and trigonal ‘twins by reticular mero-

hedry with parallel c axes’, treated here, do not depend on the

hexagonal axial ratio c/a, i.e. they can occur in any hexagonal

or trigonal crystal (the rhombohedral �3 twins are treated in

x3). This twinning is a two-dimensional phenomenon, i.e. the

distribution of coincident, single and extinct reflections is the

same for all reciprocal layers hk0, hk�1, hk�2 etc. of the twin

partners.

(ii) The lowest � value for a hexagonal or trigonal ‘parallel

c-axis twin’ is 7. These twins are either reflection twins

m0(1230) and their hexagonal equivalents m0(3120) and

m0(2310), or twofold rotation twins 20[210] with equivalents

20[130] and 20[320], generating a coincidence lattice of index

h2 + hk + k2 = 7 and u2
� uv + v2 = 7, respectively. An actual

twin of �7 or higher � value (�13, �19 etc.) is not yet known.

(iii) Twins by reticular merohedry with inclined c axes are

also possible but only for special c/a ratios. Theoretical cases

have been derived by Grimmer (1989a).

(iv) The hexagonal ‘crystal family’ treated here consists of

12 point groups, seven hexagonal and five trigonal (with four

centrosymmetric groups 3; 32/m, 6/m, 6/m2/m2/m), in contrast

to only seven tetragonal and five cubic point groups.

6.1. Basis-vector relations

In analogy to x5.1, the hexagonal basis-vector relations for

the starting domain I (a1, b1, c1, right-handed), the �7 coin-

cidence lattice (aT, bT, cT, right-handed) and the reflection

twin-related domain II (a2, b2, c2, left-handed, mirror image of

a1, b1, c1) are given below (cf. Fig. 9):

aT ¼ 2a1 � b1 ¼ 2a2 � b2

bT ¼ a1 þ 3b1 ¼ �3a2 � 2b2

cT ¼ c1 ¼ c2

Det ¼ þ7 Det ¼ �7

with the supercell parameters aT = bT = 71/2a1 = 71/2b1, cT = c1 =

c2 and VT = 7V1 = 7V2.
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Table 9
Twin diffraction cases of coincident twin-related reflection sets {hkl} for
the 12 tetragonal �5 twin laws, m0(120)/(310) and 20[120]/[310].

Tetragonal Face forms (reflection sets)

point group Twin law {00l} {12l}, {31l} {120}, {310} All others†

4 m0 A A A ‘Single’ or B1
if coincident20 B2 B2 A

4 m0 A A, B2 A
20 A B2, A A

4/m m0, 20 A A A

422 m0 A A† A† ‘Single’ or B1
if (partly)
coincident

2 A A† A†

4mm m0 A A† A†
20 B2 B2† A†

42m, 4m2 m0 A A†, B2† A†
20 A B2†, A† A†

4/m2/m2/m m0, 20 A A† A†

† Splitting into two subforms: partial coincidence (see text).

Figure 9
Hexagonal lattices (a–b planes, common c axis pointing upwards) of twin
domain I (start domain, lattice points small circles, right-handed green
unit cell a1, b1, c1), of the �7 twin-related domain II (small crosses, left-
handed blue unit cell a2, b2, c2) and of the �7 coincidence lattice (large
black points, right-handed red unit cell aT, bT, cT). The six alternative twin
reflection planes m0(12�330), m0(3120), m0(2310), m0(5410), m0(1540) and
m0(4150) are indicated by dashed lines. The coordinate axes a2, b2, c2 of
domain II (blue) are defined by the reflection plane m0(1230). The right-
handed yellow unit cell a3, b3, c3 of domain II is obtained from a1, b1, c1 by
a clockwise rotation of ’ = 120� + 2 arcsin [(1/2)(3/7)1/2] = 120� + 38.2� =
158.2� around the hexagonal axis (cf. Appendix C). This cell is commonly
used in structure determinations.



Reverse transformations:

a1 ¼ ð3aT þ bTÞ=7 a2 ¼ ð2aT � bTÞ=7

b1 ¼ ð�aT þ 2bTÞ=7 b2 ¼ ð�3aT � 2bTÞ=7

c1 ¼ cT c2 ¼ cT

Det ¼ þ1=7 Det ¼ �1=7:

Transformations between the basis vectors a1, b1, c1 (start) and

a2, b2, c2 (twin-related):

a2 ¼ ð3a1 � 5b1Þ=7 a1 ¼ ð3a2 � 5b2Þ=7

b2 ¼ ð�8a1 � 3b1Þ=7 b1 ¼ ð�8a2 � 3b2Þ=7

c2 ¼ c1 c1 ¼ c2

Det ¼ �1 Det ¼ �1:

The transformations a1, b1, c1 $ a2, b2, c2 are reversible

(binary operations). Their determinants are Det = �1, indi-

cating the change of handedness.

Similar to the tetragonal �5 twin, the basis-vector relations

of the rotation twin 2[210] are easily derived from the equa-

tions above: the transformations for the basis vectors a1, b1

and a2, b2 remain the same, whereas c2 is inverted: c2 = �c1 =

�cT, thus forming a right-handed basis.

6.2. Coincidence features of X-ray reflections

The transformations between the Miller indices (HKL) of

the (coincidence) supercell and the indices (h1k1l1) and

(h2k2l2) of the reflection twin-related partners 1 (start) and 2

are (cf. Fig. 10):

H ¼ 2h1 � k1 ¼ 2h2 � k2;
K ¼ h1 þ 3k1 ¼ �3h2 � 2k2

L ¼ l1 ¼ l2

Det ¼ þ7 Det ¼ �7

h1 ¼ ð3H þ KÞ=7 h2 ¼ ð2H � KÞ=7

k1 ¼ ð�H þ 2KÞ=7 k2 ¼ ð�3H � 2KÞ=7

l1 ¼ L l2 ¼ L

Det ¼ 1=7 Det ¼ �1=7

h2 ¼ ð3h1 � 5k1Þ=7 h1 ¼ ð3h2 � 5k2Þ=7

k2 ¼ ð�8h1 � 3k1Þ=7 k1 ¼ ð�8h2 � 3k2Þ=7

l2 ¼ l1 l1 ¼ l2

Det ¼ �1 Det ¼ �1:

For the 2[210] rotation twin the (h1, k1) $ (h2, k2) transfor-

mations are the same, but l2 = �l1 = �L and Det = +1.

Most of the transformations (h1k1l1) ! (h2k2l2) (lowest

block above) lead to fractional indices in the twin-related

domain II, i.e. the reflections (h1k1l1) of the starting domain I

are ‘single’ in the diffraction record. Only those special

reflections, which simultaneously obey the coincidence

conditions

3h1 � 5k1 ¼ 7h2 ¼ 7N and � 8h1 � 3k1 ¼ 7k2 ¼ 7M;

ðN;M integers including 0Þ

lead to integer indices (h2k2l2), i.e. reflections (h1k1l1) and

(h2k2l2) coincide. They have either equal or different F moduli,

representing diffraction cases A, B1 or B2. The two coin-

cidence conditions can be simplified by a mathematical

transformation into a single condition:

2h1 � k1 ¼ 7P ðP ¼ integer; different from N and MÞ:

The coincidence condition is the same for the re-transforma-

tion (h2k2l2)! (h1k1l1):

2h2 � k2 ¼ 7P:

From these conditions it follows (again by a mathematical

transformation) that h1
2 + h1k1 + k1

2 = h2
2 + h2k2 + k2

2 = 7Q

(Q integer11), i.e. that the d values of the coincident twin-

related reflections h1k11l and h2k2l2 are equal, as expected.12

For example, consider twin-related reflections h1k1l1 = 9.10.l

and h2k2l2 = 11.6.l (P = 4): h1
2 + h1k1 + k1

2 = h2
2 + h2k2 + k2

2 =

91, Q = 13.

The coinciding reflections represent 1/49 of all reflections

(cf. Table 1). This is demonstrated by Fig. 10: within the cell
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Figure 10
Reciprocal hexagonal lattices (hk0 lattice planes) of twin domain I (start
domain, lattice points small circles) and of the �7 twin-related domain
II (small crosses). The reciprocal lattice of the (direct-space) �7
coincidence lattice is represented by the grid of small rhombuses. The
unit cells, their handedness and their colours correspond to those of the
direct lattices in Fig. 9. In the large cell formed by the four reciprocal
coincidence points 000, 310, 410, 120 (in terms of a1*, b1*) or 000, 700,
770, 070 (in terms of aT*, bT*) there are six ‘single’ points of twin domains
I and II each, one ‘coincident’ point 000 and, with reference to aT*, bT*,
36 ‘extinct’ reciprocal points (cf. Table 1). These strange ‘non-space-
group extinctions’ are characteristic of the �7 twin law.

11 Q = 7P2 + h1(h1 � 5P) = [7P2 + k1(k1 + 4P)]/4 for coincidence condition 2h1

� k1 = 7P. The same holds for h2, k2 and condition 2h2 � k2 = 7P.
12 The d values of reflections hkl of a hexagonal crystal are given by 1/d2 =
(h2 + hk + k2)/a2 + l2/c2. Since l2/c2 is the same for both twin-related reflections,
the d values are equal for equal h2 + hk + k2.



formed by the four coincident reciprocal-lattice points 000,

310, 410, 120 (in terms of a1*, b1*) or 000, 700, 770, 070 (in

terms of aT*, bT*) there are six single points of twin domains I

and II each, one coincident point 000 and, with reference to

aT,* bT*, 36 ‘extinct’ reciprocal-lattice points.

6.3. Group-theoretical considerations, possible R7 twins

For the highest point-group symmetry of the hexagonal

crystal family, 6/m2/m2m of order 24, the twin intersection

group of the two twin partners is 6/m (order 12). The 12

operations of the coset (twin law) of the oriented reduced

composite symmetry 6/m20/m020/m0 are partitioned into four

subsets of three symmetrically equivalent twin operations

each:

1(a) twin reflection planes: m0(1230), m0(3120), m0(2310);

1(b) twofold twin axes: 20[450], 20[510], 20[140];

2(a) twin reflection planes: m0(5410), m0(1540), m0(4150);

2(b) twofold twin axes: 20[210], 20[130], 20[320].

Proper combinations of these four subsets produce the

‘cosets of alternative twin elements’ for all eight hexagonal

and eight trigonal point groups (‘structural settings’), as shown

in Table 10. All these structural settings are subgroups of

index 1 to 8 of the hexagonal holohedral point group

6/m2/m2m.

6.3.1. Hexagonal point groups. From Table 10 it can be

concluded that point groups 6/m and 6/m2/m2/m, both with

twin intersection group 6/m and reduced composite group

6/m20/m020/m0, have the full coset consisting of all four subsets

with 12 twin operations, whereas all other hexagonal groups

with twin intersection groups 6 or 6 have only six twin

operations, formed by various combinations of two of the four

subsets.

Note that all twins are either pure reflection or rotation

twins, except for the centrosymmetric groups 6/m and

6/m2/m2m, the cosets of which contain six reflection and six

rotation operations. Similarly, the cosets of point group 6 and

the two ‘structural settings’ 6m2 and 62m contain three

reflections and three rotations each, i.e. the twins of these

point groups are reflection as well as rotation twins. In total,

there are 14 possible hexagonal �7 twins (Table 10).

6.3.2. Trigonal point groups. Each of the five trigonal point

groups is a (normal) subgroup of index 2 of one or two

hexagonal point groups (symbolized by <):

3 < 6 and 6; 3 < 6/m; 32 < 622 and 62m; 3m < 6mm and 6m2;

32/m < 6/m2/m2/m.

This subgroup degradation is accompanied by a splitting of

the three poly-axial groups 32, 3m and 32/m into two different

subgroups: 321/312, 3m1/31m and 32/m1/312/m (‘structural

settings’).13 For the mono-axial groups 3 and 3 no splitting into

different ‘structural settings’ occurs.

As a consequence, the cosets of the trigonal point groups

contain half as many elements as the cosets of their hexagonal

supergroups: two subsets (six elements) each for the centro-

symmetric groups/settings 3, 32/m1 and 312/m and one subset

(three elements) each for all other trigonal groups/settings,

resulting in the unusually large number of 26 possible trigonal

�7 twins (Table 10). Again, all twins are either reflection or

rotation twins, with the exception of the centrosymmetric

groups 3, 32/m1 and 312/m, which are both reflection and

rotation twins.

6.4. Intensity relations of superimposed twin-related reflec-
tions

Again, only those reflections of the two twin partners are

considered which are both present (not ‘single’) and coin-

cident. Two categories of the corresponding face forms

(reflection sets) are distinguished (cf. x5.4):

(a) Face forms pyramids {123l} and {541l} (more generally

{h.2h.3h.l} and {5h.4h.h.l}) (Table 11). They include the (di)-

hexagonal and (di)-trigonal prisms (l = 0) and the pedion/

pinacoid (h = 0). By the �7 twinning these hexagonal forms

are (fully or partially) mapped upon themselves (diffraction

case A) or upon their opposite forms (diffraction case B2). For

the twins of the trigonal point groups, however, besides

diffraction cases A and B2, diffraction case B1 also occurs

(Table 11).

(b) All other face forms {hkil}. They are either ‘single’ or

are mapped (fully or partially) upon a non-equivalent form,

leading to diffraction case B1.

Again, mono-axial and poly-axial groups are distinguished.

In the mono-axial groups coincident twin-related hexagonal/

trigonal face forms {hkil}hex/{hkil}trig are always fully

coincident, whereas in the poly-axial groups di-hexagonal/

di-trigonal forms {hkil}dihex/{hkil}ditrig are only ‘partially

coincident’, i.e. they are split into two mono-hexagonal/mono-

trigonal subforms {hkil}hex/{hkil}trig and {khil}hex/{khil}trig, one

of which is ‘coincident’ with its twin-related partner (always

diffraction case B1) and the other is ‘single’. In the majority of

general hkil cases both mono-axial sets are ‘single’. All these

cases can be illustrated in the same way as for the �5 twins

(Figs. 6–8). The diffraction cases of twin-related reflection

sets for all hexagonal and trigonal point groups are listed in

Table 11.

Rhombohedral (R) centring. The effect of the rhombohe-

dral centring of a hexagonal lattice on the �7 twinning is

somewhat complicated: depending on the �7 twin element

two different cases can occur. As for the �5 twins in x5.4, only

the coincidence lattice aT, bT, cT (red in Fig. 9) and the ‘doubly

non-extinct’ coincident reflections (first line in Table 1, large

dots in Fig. 10) need to be considered. The ‘single’ reflections

of both domains (lines 2 and 3 in Table 1, small crosses and

circles in Fig. 10) and their extinctions belong to the

untwinned domains and can be used to determine the space

group of the (untwinned) crystal and the twin law.

It is assumed that the starting domain I (green cell a1, b1, c1

in Fig. 9) exhibits ‘obverse’ centring; hexagonal axes are used

throughout.

(i) If the �7 twin element is one of the three symmetrically

equivalent reflection planes ð12�330Þ, ð�33120Þ, ð2�3310Þ with

research papers

100 H. Klapper and Th. Hahn � Application of eigensymmetries of face forms Acta Cryst. (2012). A68, 82–109

13 The reduced composite symmetries are the same for 3m1 and 31m etc.,
because the twin elements m0(1230) etc. are the same for both groups. For
details of ‘structural settings’, see Klapper & Hahn (2010), Appendix A.



h2 þ hkþ k2 ¼ 7 or one of the three perpendicular equivalent

twofold axes [450], ½�55�110�, ½�1140� with u2 � uvþ v2 ¼ 21, the

direct-space coincidence lattice is not R-centred but primitive

(red cell aT, bT, cT in Fig. 9), because no rhombohedral centring

points of the two twin domains coincide. Hence, the reciprocal

coincidence lattice has the same cell (large dots) as in Fig. 10:

00l, 70l, 77l, 07l with l = 0 and 3, without any ‘doubly extinct’

points.

(ii) If the �7 twin elements are rotated around [001] by 30�

(or 90�) compared to those in (i), i.e. if the twin element is

one of the three equivalent reflection

planes ð41�550Þ, ð�55410Þ, ð1�5540Þ with

h2 þ hkþ k2 ¼ 21, or one of the three

perpendicular equivalent twofold axes

[320], ½�2210�, [130] with u2 � uvþ v2 ¼ 7,

the direct-space coincidence lattice is

R-centred (obverse), with (doubly coin-

cident) centring points in 2/3, 1/3, 1/3 and

1/3, 2/3, 2/3. This triple direct cell leads to a

triply diluted reciprocal coincidence cell

[compared to case (i) above] formed by the

points 00l, 21.0.l, 21.21.l, 0.21.l with l = 0

and 3, which contains the following ‘doubly

non-extinct’ reflections:

l ¼ 0: 000; 770; 14:14:0;

l ¼ 1: 701; 0:14:1; 14:7:1;

l ¼ 2: 072; 14:0:2; 7:14:2:

Space-group extinctions. The space-

group extinctions of non-symmorphic

space groups have rather simple effects for

�7 twins, because in trigonal and hexa-

gonal crystals only screw axes along

[001] and two types of c-glide planes

occur: h0 �hhl; l ¼ 2n (example P3c1) and

hh2hl; l ¼ 2n (example P31c). Both

conditions exist in P6cc. In rhombohedral

crystals only h0 �hhl; l ¼ 2n occurs in R3c and

R�33c. The effect of these symmetry elements

upon the �7 twins can be summarized as

follows:

(i) All extinctions of {000l} reflection

sets, due to threefold and sixfold screw

axes, coincide for both twin domains,

because their c axes are parallel.

(ii) Because the �7 twin planes are

inclined to the secondary and tertiary

c-glide planes, only the ‘coincident’ reflec-

tions (first line in Table 1, large dots in

Fig. 10) need to be considered.

(iii) Hexagonal space groups with c-glide

planes: For l ¼ 2nþ 1 extinct reflections

fall on non-extinct ones, whereas for l ¼ 2n

the coincidence pairs are non-extinct.

There are no ‘doubly extinct’ reflections.

(iv) Rhombohedral space groups with c-glide planes: For

h0 �hhl; l ¼ 2nþ 1, extinct (c-glide) reflections fall either on

non-extinct or on extinct (R-lattice) reflections, depending

upon the value of l (= 6n � 3 or = 6n � 1) and the type of

twin element (see above). For l = 2n the coincidences in R3c

and R�33c are unchanged compared to R3m and R�33m.

However, now l ¼ 6n is the period along c of the reciprocal

coincidence lattice (reflections 000l occur only for l ¼ 6n), in

contrast to l ¼ 3n for the symmorphic rhombohedral space

groups.
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Table 10
Twin intersection point groups, twin laws (cosets) and reduced (oriented) composite groups for
the eight hexagonal and eight trigonal ‘structural settings’, resulting in 14 hexagonal and 26
trigonal �7 twin laws.

The number of twin laws for each point group (structural setting) is given in column 1 in parentheses.
The twins are either pure reflection or pure rotation twins. In point groups 6 and 62m/6m2, as well as in
the four centrosymmetric point groups, however, they are reflection as well as rotation twins, see text.
The symbols of the reduced (oriented) composite groups refer to the hexagonal axes aT, bT, cT of the
coincidence lattice. Note that all (untwinned) point groups and structural settings with the same twin
intersection group have the same twin laws (cosets) and the same reduced composite groups (i.e.
groups 6, 622 and 6mm; 6, 6m2 and 62m; 6/m and 6/m2/m2/m; 3, 321, 312, 3m1 and 31m; 3, 32/m1 and
312/m), but nevertheless represent different twin cases. For details of the twin laws (cosets) see x6.3.

Point group, structural
settings
(No. of twin laws)

Twin
intersection
group

Twin law
(cosets)

Reduced oriented
composite group

Hexagonal point groups

6 (2) 6 m0: 1(a) + 2(a) 6m0m0

20: 1(b) + 2(b) 62020

6 (2) 6 m0 + 20: 1(a) + 2(b) 6m020

20 + m0: 1(b) + 2(a) 620m0

6/m (1) 6/m 20/m0 + 20/m0: 1(a) + 1(b) + 2(a) + 2(a) 6/m20/m020/m0

622 (2) 6 m0: 1(a) + 2(a) 6m0m0

20: 1(b) + 2(b) 62020

6mm (2) 6 m0: 1(a) + 2(a) 6m0m0

20: 1(b) + 2(b) 62020

6m2, 62m (2 + 2) 6 m0 + 20: 1(a) + 2(b) 6m020

20 + m0: 1(b) + 2(a) 620m0

6/m2/m2/m (1) 6/m 20/m0 + 20/m0: 1(a) + 1(b) + 2(a) + 2(a) 6/m20/m020/m0

Trigonal point groups

3 (4) 3 m0: 1(a) 3m01
m0: 2(a) 31m0

20: 1(b) 3201
20: 2(b) 3120

3 (2) 3 20/m01: 1(a) + 1(b) 320/m01
120/m0: 2(a) + 2(b) 3120/m0

321, 312 (4 + 4) 3 m0: 1(a) 3m01
m0: 2(a) 31m0

20: 1(b) 3201
20: 2(b) 3120

3m1, 31m (4 + 4) 3 m0: 1(a) 3m01
m0: 2(a) 31m0

20: 1(b) 3201
20: 2(b) 3120

32/m1, 312/m (2 + 2) 3 20/m01: 1(a) + 1(b) 320/m01
120/m0: 2(a) + 2(b) 3120/m0



The twin diffraction cases for rhombohedral crystals are

the same as for the trigonal crystals in Table 11, except that the

extinctions due to the R-centring and, if present, due to the

h0 �hhl c-glide have to be taken into account additionally.

7. Conclusion

The present paper completes our treatment of twinning by

(reticular) merohedry which was started with the �1 twins

(complete lattice coincidence, Klapper & Hahn, 2010) and is

continued here with � > 1 twins (partial lattice coincidence).

Always twins with the lowest possible � value for a given

crystal system are treated: �3 twins of rhombohedral and

cubic, �5 twins of tetragonal, and �7 twins of hexagonal and

trigonal crystals. Based on these treatments, the approach

can be easily extended to coincidence lattices of higher �
values.

In the twins treated here the main symmetry axes (three-

fold, fourfold, sixfold) of all twin domains are always parallel.

This has the important consequence that the (exact) coin-

cidences of reflection sets (‘diffraction cases’ A, B1, B2) are

independent of the axial ratio c/a or the rhombohedral angle �
of the crystal, in contrast to the twinning by reticular mero-

hedry with inclined axes, where lattice coincidences occur only

for special axial ratios (cf. Grimmer, 1989a,b, 2003).

The diffraction records of the � > 1 twins with parallel main

axes contain ‘single’ reflections of twin domains I and II each,

‘coincident’ reflections of both domains and, if referred to the
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Table 11
Twin diffraction cases of coincident twin-related reflection sets (face forms) {hkil} for the 14 hexagonal and 26 trigonal �7 twin laws m0(1230), 20[450],
m0(5410) and 20[210].

Diffraction cases of di-hexagonal/di-trigonal face forms (reflection sets) are marked with *. They are split into the ‘mono’ subforms {123l} and {541l} which are
‘coincident’, and the associated subforms {213l} and {451l} which are ‘single’ (‘partial coincidence’, see text). Diffraction cases separated by a comma (e.g. A, B2)
refer to the different {hkil} forms given at the top of columns 4 and 5; a slash (e.g. A/A) separates entries for the two structural settings listed in column 1.

Face forms (reflection sets)

Point group Twin law {000l} {12�33l}, {�5541l} {12�330}, {�55410} All others†

Hexagonal point groups
6 m0 A A A Single or B1 if coincident

20 B2 B2 A

6 m0 + 20 A B2, A B2, A
20 + m0 A A, B2 A, B2

6/m 20/m0 + 20/m0 A A A

622 m0 A A* A* Single or B1 if (partly) coincident*
2 A B2* A*

6mm m0 A A* A*
20 B2 B2* A*

6m2/62m m0 + 20 A/A B2*, A*/A*, B2* B2*, A*/A*, B2*
20 + m0 A/A A*, B2*/B2*, A* A*, B2*/B2*, A*

6/m2/m2/m 20/m0 + 20/m0 A A* A*

Trigonal point groups
3 m0 A B1, A B2, A Single or B1 if coincident

m0 A A, B1 A, B2
20 B2 B1, B2 A, B2
20 B2 B2, B1 B2, A

3 20/m01 A B1, A A/A
120/m0 A A, B1 A/A

321/312 m0 A/A B1*, A*/A*, B1* B2*, A*/A*, B2* Single or B1 if (partly) coincident*
m0 A/A A*, B1*/B1*, A* A*, B2*/B2*, A*
20 A/A B1*, B2*/B2*, B1* B2*, A*/A*, B2*
20 A/A B2*, B1*/B1*, B2* A*, B1*/B1*, A*

3m1/31m m0 A/A B1*, A*/A*, B1* B2*, A*/A*, B2*
m0 A/A A*, B1*/B1*, A* A*, B2*/B2*, A*
20 B2/B2 B1*, B2*/B2*, B1* A*, B2*/B2*, A*
20 B2/B2 B2*, B1*/B1*, B2* B2*, A*/A*, B2*

32/m1/312/m 20/m01 A/A B1*, A*/A*, B1* A*/A*
120/m0 A/A A*, B1*/B1*, A* A*/A*

† Splitting into two subforms: partial coincidence (see text).



�n coincidence cell, doubly ‘extinct’ reflections.

For a given � value the ratio of single reflections

to coincident reflections is (� � 1):1 for each of

the two domain states [or 2(� � 1):1 for both

states], i.e. 2:1 for �3, 4:1 for �5 and 6:1 for �7

twins (cf. Table 1). Thus, in structure determi-

nations of crystals twinned with high � values it

may be sufficient to measure only the ‘single’

reflections of one domain (advisably the one

with larger volume) and perform the refine-

ments without the coincident reflections and the

volume ratios of the twin partners. This has been

shown for a �3 obverse/reverse twin by Wilkens

& Müller-Buschbaum (1992) and for a �5 twin

by Oeckler et al. (2002). The latter compared the

results of the structure determinations of a

single (untwinned) and a �5 twinned crystal

(volume ratio about 50:50), whereby the latter

was refined with both the complete diffraction

data of the twinned crystal and the data of each

of the two domains alone. The inclusion of all

reflections yielded only slightly better results

than using the data from only one domain. The

parameters of the single and the twinned crystal,

however, differ somewhat more than their

e.s.d.’s indicate. Thus it is expected that in some

cases, particularly for twins with � � 7, the

structure determination and refinement with the

diffraction data of the larger domain alone is

sufficient. Of course, the nature of the twinning

must be recognized beforehand, e.g. by unusual

‘non-space-group absences’ in the diffraction

record of the twin (cf. x2.1 and Table 2). A real

case of a twin with � � 7, however, is not

known.

A final remark concerns the twins by

reticular merohedry with inclined axes. There is

no face form (reflection set) that contains a

twin element in its eigensymmetry. Thus, all

coincident reflections are symmetrically non-

equivalent and provide B1 diffraction cases.

Exceptions are those special (single) faces that

are parallel or normal to the twin mirror plane

or the twofold twin axis. They are diffraction

case A.

APPENDIX A
Overview of merohedral R1 and R3 twins
of rhombohedral crystals

In Appendix A of the previous paper (Klapper & Hahn, 2010,

p. 339) the index n of the point group of the ‘untwinned

crystal’ in its holohedral point group was established as the

‘order parameter’ for the �1 merohedral twins. In particular,

for the hexagonal crystal family the maximal value n = 8

represents the ‘distance’ of the ‘hexagonal’ point group 3 from

the hexagonal holohedry 6/m2/m2/m and n = 4 the ‘distance’

of the ‘rhombohedral’ point group 3 from the rhombohedral
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Table 12
Merohedral �3 and �1 twin laws of rhombohedral (R) crystals (described in hexagonal
axes, top line, and in rhombohedral/cubic axes, bottom line).

(1) Coset of subgroup 32/m (rhombohedral holohedry, order 12) in supergroup 6/m2/m2/m
(hexagonal holohedry, order 24), partitioned into four subsets of three alternative twin
operations each forming merohedral �3 twins of rhombohedral crystals.

1(a) Sixfold twin rotations 61[001] 63 = 2[001] 65[001]
61[111] 63 = 2[111] 65[111]

1(b) Sixfold twin rotoinversions 61[001] 63[001] = m(0001) 65[001]
61[111] 63[111] = m(111) 65[111]

1(c) Twofold twin rotations 2[210] 2[110] 2[120]
2[211] 2[121] 2[112]

1(d) Twin reflections m(1010) m(1100) m(0110)
m(211) m(121) m(112)

(2) Eigensymmetry elements of the rhombohedral holohedry 32/m (order 12), forming
merohedral �1 twins of rhombohedral crystals.

2(a) Threefold rotations 30[001] = 1 31[001] 32[001]
30[111] = 1 31[111] 32[111]

2(b) Threefold rotoinversions 31[001] 33[001] = 1 35[001]
31[111] 33[111] = �11 35[111]

2(c) Twofold rotations 2[100] 2[010] 2[110]
2[110] 2[011] 2[101]

2(d) Reflections m(2110) m(1210) m(1120)
m(110) m(011) m(101)

Table 13
The 11 �3 and 11 �1 twin laws of the five rhombohedral point groups.

Note that in column 6 the first twin law of each rhombohedral point group (first line, printed in
bold) is the identity (untwinned crystal). The �1 twins (column 5) are treated in detail in
Klapper & Hahn (2010), Table 9.

Point
Index [n] in
6/m2/m2/m

Twin composite group and twin law

group (order 24) �3 twins Twin law �1 twins Twin law

3 (order 3) 8 6 1(a) 3 2(a)
6 1(b) 3 2(b)
312 1(c) 321 2(c)
31m 1(d) 3m1 2(d)

3 (order 6) 4 6/m 1(a) + 1(b) 3 2(a) + 2(b)
312/m 1(c) + 1(d) 32/m1 2(c) + 2(d)

32 (order 6) 4 622 1(a) + 1(c) 321 2(a) + 2(c)
62m 1(b) + 1(d) 32/m1 2(b) + 2(d)

3m (order 6) 4 6mm 1(a) + 1(d) 3m1 2(a) + 2(d)
6m2 1(b) + 1(c) 32/m1 2(b) + 2(c)

32/m (order 12) 2 6/m2/m2/m 1(a) + 1(b)
+ 1(c) + 1(d)

32/m1 2(a) + 2(b)
+ 2(c) + 2(d)



holohedry 32/m. The relevant �1 twin laws are listed in

Appendix D, Tables 9(c) and 9(d), of Klapper & Hahn

(2010).

The results of the present paper permit the extension of

the index n to both �3 and �1 twins of rhombohedral crystals:

the number of �1 plus �3 merohedral twin laws is again

n = 2, 4 and 8, even though the distance between point

group 3 and its rhombohedral holohedry is only 4. Table 12

lists the four subsets 1(a)–1(d) for the �3 twins and the four

subsets 2(a)–2(d) for the �1 twins, whereas Table 13 gives

the 11 combinations of the subsets in the various twin

composite groups. Each rhombohedral point group has

n/2 (= 1, 2 or 4) �3 and n/2 �1 twin laws. Hence, in all

cases n twin laws exist, in particular n = 8 different twin

laws for point group 3. This way the index 8 appears again

as the ‘order parameter’ for the entire hexagonal crystal

family, based both on the rhombohedral and the hexagonal

lattice.

The following features are noteworthy:

(i) Among the �1 twins the ‘untwinned’ crystal must be

taken as the first twin law, just as in any symmetry group the

identity 1 is the first symmetry operation. In Tables 9(c) and

9(d) of Klapper & Hahn (2010) the ‘identity twin law’ is

omitted, i.e. only (n � 1) �1 twin laws are listed.

(ii) Tables 12 and 13 show that for the five point groups

3, 3, 32, 3m and 32/m the two well known ‘obverse/reverse’

twin laws 2[001] and m(0001), 1(a) and 1(b) (hexagonal

axes), exist. There exist, however, two further independent

�3 twin laws, represented by 2[210] and m(1010), 1(c) and

1(d). These two �3 twin laws have not found particular

attention in the past. Three experimental cases, however, are

reported:

(a) In the structure determination of a �3 twin of

KAu(CN)2 (space group R3) the twin law 2[210] = m(1010),

case 1(c) and 1(d) of Table 13, has been postulated (Rosen-

zweig & Cromer, 1959).

(b) In the ‘Example 2’ (point group 3), described by Herbst-

Irmer & Sheldrick (2002), the following twin laws are

mentioned: �3 twofold twin axis ‘a � b’, i.e. 2[110] = 2[210]

[case 1(c) in Table 13] and �1 twofold twin axis ‘a + b’, i.e.

2[110] = 2[100] [case 2(c), hexagonal axes]; in addition a

possible �1 inversion twinning is included.

(c) In the structure determination of KAuxAg(1�x)(CN)2

(space group R3) the �3 twin law 2[210] = m(1010) has been

identified (Hettiarachchi et al., 2007).

(iii) The occurrence of n (�1 + �3) twin laws in the five

rhombohedral point groups can also be understood as

follows: of the n possible twin laws, the n/2 �1 cases are

represented by twin elements that are symmetry elements of

the rhombohedral holohedry 32/m, but not of the point

group of the (untwinned) crystal, whereas the n/2 �3 twin

laws are formed by twin elements that are symmetry

elements of the hexagonal holohedry 6/m2/m2/m, but not of

the rhombohedral holohedry 32/m. This shows once more

the unique role played by the hexagonal crystal family among

the six three-dimensional crystal families (seven crystal

systems).

APPENDIX B
Splitting of cubic into rhombohedral face forms

The splitting of the various (general and special) face forms

{hkl}cub of the cubic holohedry 4/m32/m into the (general and

special) subface forms {hkl}rh of its subgroup 32/m of index [4]

(rhombohedral holohedry), briefly outlined in x4.1, is treated

here in more detail. The threefold axis of the subgroup 32/m is

one of the four threefold axes h111i of the cubic group, here

[111] is chosen (which is later the spinel twin axis), and the

rhombohedral coordinate axes are the cubic coordinate axes

(rhombohedral angle � = 90�).14

The crucial parameter for finding the rhombohedral subface

forms {hkl}rh of the cubic form {hkl}cub is n = h + k + l. The

meaning of n becomes apparent by considering the transfor-

mation of the rhombohedral indices {hkl}rh into hexagonal

indices {hkil}hex (cf. Arnold, 2002):

Obverse setting Reverse setting

hhex ¼ hrh � krh hhex ¼ �hrh þ krh

khex ¼ krh � lrh khex ¼ �krh þ lrh

ihex ¼ �hrh þ lrh ihex ¼ hrh � lrh

lhex ¼ hrh þ krh þ lrh lhex ¼ hrh þ krh þ lrh:

This shows that n ¼ hrh þ krh þ lrh is the hexagonal

Bravais–Miller index lhex of the faces {hkl}rh with respect to the

threefold symmetry axis. Since all faces of a rhombohedral

form have the same Miller index �lhex, the faces of {hkl}cub

with equal values of n constitute a rhombohedral subform, i.e.

the different subforms can be distinguished by their different

values of n ¼ hþ kþ l. In the rhombohedral subgroups with

a polar axis (3 and 3m), n is either positive or negative for all

faces of a form, whereas in the groups with a non-polar axis

(3, 32, 32/m) one half of the faces of a form has positive, the

other half negative lhex ¼ n. In the following this simple rule is

applied to the general and special forms of the cubic holo-

hedry 4/m32/m with subgroup 32/m along [111]cub.15

General face form {hkl}cub of 4=m32=m (48 faces):

The general form {hkl}cub of 4/m32/m (all indices different

and not zero) has the multiplicity 48 (cf. Hahn & Klapper,

2002, p. 790), whereas the general form {hkl}rh of subgroup

32/m has the multiplicity 12. Thus the form {hkl}cub must split

into four different general subforms {hkl}rh:16

(a) {hkl}rh with h + k + l = �n1

(b) {hkl}rh with �h� kþ l = �n2

(c) {hkl}rh with �hþ k� l = �n3

(d) {hkl}rh with h� k� l = �n4.

Since the values of n1, n2, n3, n4 are different, these subforms

are also different. They correspond to the identity and to the

twofold axes [001], [010] and [100] common to the five cubic
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14 Note that there are four conjugate subgroups 32/m of 4/m32/m of index [4].
Each of these has a single 3 axis along one of the four body-diagonal 3 axes of
the cubic supergroup (cf. Müller, 2004, p. 708).
15 If the subgroup is chosen along one of the other body diagonals [111], [111]
or [111], the types of splitting, given below, remain the same, but the Miller
indices of the subforms would change.
16 They represent the four conjugate subgroups 32/m of 4/m32/m.



supergroups. In the rhombohedral holohedry 32/m there are

three different types of general face forms of multiplicity 12:

the ‘ditrigonal scalenohedron’ {hkl}rh, the limiting general form

‘hexagonal dipyramid’ with the special index combination

{hk(2k � h)}rh, i.e. n = h + k + l =�3k, and the limiting general

form ‘dihexagonal prism’ with the special index combination

{hk(hþ k)}rh, i.e. n = h + k + l = 0 (cf. Hahn & Klapper, 2002,

p. 782 and Fig. 3 of the present paper).

Depending on the values of h; k; l, the following four

combinations of subforms may occur:

(a) all four subforms are ditrigonal scalenohedra; for

example, {236}cub;

(b) three ditrigonal scalenohedra and one hexagonal

dipyramid: one of the subforms has the index combination

{hk(2k � h)} with n = �3k; for example, {214}cub, subform

{214}rh;

(c) three ditrigonal scalenohedra and one dihexagonal

prism: one of the subforms has the index combination

{hk(hþ k)} with n = h + k + l = 0; for example, {347}cub,

subform {347}rh;

(d) two ditrigonal scalenohedra, one hexagonal bipyramid

and one dihexagonal prism: there is one index combination

{hk(2k � h)} and one with h + k + l = 0; for example, {123}cub,

subforms {123}rh and {123}rh (cf. x4.1 and Fig. 3). Note that

the general form {123}cub and its higher orders h{123}cub are

the only ones that split into three different subforms.

Special face forms of 4=m32=m:

Form {hhl}cub (24 faces). Both types of cubic face forms,

trapezohedron (|h| < |l|) and trisoctahedron (|h| > |l|), always

split into three rhombohedral subforms: {hhl}rh (rhombohe-

dron, six faces), {hhl}rh (rhombohedron, six faces) and {hhl}rh =

{hhl}rh (ditrigonal scalenohedron, 12 faces). For the special

case l = 2hcub the rhombohedron {hhl}rh degenerates into the

hexagonal prism {hh2h}rh; similarly for l = �2hcub in {hhl}rh.

Form {0kl}cub (24 faces). This form, tetrahexahedron,

always splits into two different ditrigonal scalenohedra {0kl}rh

and {0kl}rh (both 12 faces). For the special case l = 2kcub the

subform {0k2k}rh is a hexagonal dipyramid (12 faces); the

other one, {0k2k}rh, remains a ditrigonal scalenohedron;

similarly for l = �2kcub.

Form {0kk}cub (12 faces). The rhomb-dodecahedron splits

into the two subforms {0kk}rh (rhombohedron, six faces) and

{0kk}rh (hexagonal prism, six faces).

Form {hhh}cub (eight faces). The octahedron splits into the

subforms {hhh} (pinacoid, two faces) and {hhh} (60� rhom-

bohedron, six faces).

Form {h00}cub (six faces). The cube is a 90� rhombohedron

{h00}rh (six faces) and does not split.

In the four merohedral cubic groups an additional splitting

may occur as a result of the lower symmetry. For example, in

the two non-centrosymmetric groups with polar threefold

axes, 43m and 23, the cube {h00}cub is split into two ‘opposite’

trigonal 90� pyramids {h00}rh and {h00}rh.

Special face form {0kk} in the five cubic point groups:

As a further illustration the splitting of the cubic form

rhomb-dodecahedron {0kk}cub (12 faces) in the five cubic

groups is considered. This centrosymmetric form, common to

all cubic groups, exhibits a rich variety of splitting into

rhombohedral subforms. There are two main rhombohedral

subforms in the centrosymmetric groups: {0kk} (n = 0, hexa-

gonal prisms) and {0kk} (rhombohedra). In the non-centro-

symmetric groups these are further subdivided into two

‘opposite’ trigonal prisms and two ‘opposite’ trigonal 120�

pyramids.17 The twin-related reflections of the sets {0kk}

(prisms) are mapped upon themselves or their antipodes and

are always coincident. The reflections of the sets {0kk},

however, are transformed into absent reflections 1/3k{114} (cf.

index transformations in x3.3). Only the third-order reflections

3N{0kk} (N integer) coincide with twin-related Nk{114}

(diffraction case B1), the others are ‘single’.

The splitting of the rhomb-dodecahedron {0kk}cub into

subforms with their specific diffraction cases for the five

rhombohedral subgroups is presented in Table 14. Note that

the two opposite trigonal prisms {0kk}rh and {0kk}rh of inter-

section groups 3 and 32 are transformed into each other by the

twin elements 2[111] and 2[211] and thus are formally Bijvoet

sets (diffraction case B2). These two sets, not equivalent in the

rhombohedral groups, are equivalent in their cubic super-

groups and have equal F moduli. Thus, they represent in effect

diffraction case A. This particular case is here denoted with A

(underlined). This fact is due to the centrosymmetric eigen-

symmetry of the form {0kk}cub (rhomb-dodecahedron) also in

the non-centrosymmetric cubic groups.

Summary of all cubic!rhombohedral split forms and their

�3 twin diffraction cases

Table 15 provides a complete list of the rhombohedral

subforms of all general, limiting and special cubic face forms

of the five cubic point groups, including their diffraction cases

for all spinel �3 twin laws. Details of the list are explained in

the following remarks.

Each entry in lines 1–10 contains up to four rhombohedral

face forms with in general different values of n = hþ kþ l,

consisting of the starting form given in column 1 and the three

further forms generated from the first by the twofold axes

along [100]cub, [010]cub and [001]cub of the cubic supergroup.

Owing to the rhombohedral angle � = 90�, some or all of these

twofold cubic axes may be eigensymmetry axes of the (rhom-

bohedral) form generated by them. This means that two of the

four forms, or even all four forms, are identical, displaying

different but symmetrically equivalent Miller indices. Exam-

ples are given in remarks to lines 5, 7, 9 and 10 below.

Line 2: the cubic symbol {hk(2k � h)}cub in column 2 stands

for the four rhombohedral subforms {hk(2k � h)}rh (n = 3k),

{hk(2k � h)}rh (n = k � 2h), {hk(2k� h)}rh (n = � k) and

{hk(2k� h)}rh (n = 2h � 3k). The first form with n = 3k

(pyramids and rhombohedron, e.g. {345} with n = 12) repre-

sents coincident twin-related reflection sets (diffraction cases

A, B1, B2), the other three forms represent reflection sets with

diffraction cases ‘S + B1’.
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Line 3: the cubic symbol {hk(h + k)}cub in column 2

stands for the four rhombohedral subforms {hk(h + k)}rh

(n = 2h + 2k), {hk(h + k)}rh (n = 0), {hk(hþ k)}rh (n =�2h) and

{hk(hþ k)}rh (n = �2k). The form with n = 0 (prisms, e.g.

{235}) represents coincident reflection sets (diffraction cases

A, B1, B2), the other three forms represent reflection sets with

diffraction cases ‘S + B1’.

Line 5: the cubic form {hh2h}cub splits into the rhombo-

hedral subforms {hh2h}rh (n = 4h), {hh2h} (n = 0, prisms),

{hh2h}rh (n = �2h) and {hh2h}rh (n = �2h). In the rhombo-

hedral point groups 32/m (column 3) and 3m (column 4) the

latter two sets with equal n = �2h merge into one form,

whereas they are different forms in the other three groups

(columns 5–7).

Line 7: the cubic face form {0k2k}cub is a special case of form

{0kl}cub in line 6. Its rhombohedral subforms are {0k2k)}rh

(n = 3k), {0k2k}rh (n = �3k), {0k2k}rh (n = �k) and {0k2k}rh

(n = k). There occur two types of combinations of these

subforms: in the two centrosymmetric rhombohedral groups

32/m and 3 (columns 3 and 6) the two subforms with n = 3k

and n = �3k, as well as the two subforms with n = �k and

n = k, are the same, because of centrosymmetry. They form

two centrosymmetric face forms, one with diffraction case A,

one with diffraction case S + B1. In the non-centrosymmetric

groups 3m, 32 and 3 (columns 4, 5 and 7) the cubic form {0k2k}

splits into four non-centrosymmetric, but pairwise opposite

subforms, one pair with n = � 3k exhibits diffraction cases A,

A and B1, the other pair with n = � k provides S + B1.

Line 8: the cubic form {0kk}cub is the centrosymmetric

rhomb-dodecahedron in all cubic point groups. Its splitting

into rhombohedral subforms and their twin diffraction cases

are treated in detail above in this Appendix and in Table 14.

Line 9: the cubic form octahedron {hhh}cub with rhombo-

hedral split forms {hhh}rh (n = 3h), {hhh}rh (n = �h), {hhh}rh

(n = �h), {hhh}rh (n = �h). The first form {hhh}rh represents

the pedion or the pinacoid, whereas the following three

index triples, all with n = �h, represent the same trigonal

60� pyramid (groups 3m and 3, columns 4 and 7) or 60�

rhombohedron (groups 32/m, 32 and 3, columns 3, 5, 6).

Line 10: the cube {h00}cub with formal rhombohedral split

forms {h00}rh (n = h), {h00}rh (n =�h), {h00}rh (n =�h), {h00}rh

(n = h). In the three rhombohedral point groups with a non-

polar threefold axis 32/m, 32 and 3 (n = � h, columns 3, 5 and

6) all four index triples represent the same 90� rhombohedron

(cube), because the three cubic twofold axes quoted above

belong to the eigensymmetry of the 90� rhombohedron. In the

two polar rhombohedral groups 3m and 3 (columns 4 and 7)

only the two index triples with the same sign of h represent the

same form, resulting in the two split forms ‘opposite trigonal

90� pyramids’. The splitting results from the loss of the

inversion centre of the 90� rhombohedron in the polar groups.

For all reflection sets {h00} only twin diffraction case ‘S + B1’

occurs.

APPENDIX C

Right-handed coordinate systems of R5 and R7
reflection twins

C1. Tetragonal R5 reflection twins m’(120) and m’(310) with
both twin partners based on right-handed coordinate systems

In x5.1 the basis-vector relations are given for the case that

the coordinate systems of the two �5 twin partners are of

opposite handedness, i.e. basis vectors and twin domains

exhibit the same enantiomorphism. Following international

convention, however, both twin partners and their coincidence

lattice are usually described in right-handed coordinate

systems, even if the twin partners are enantiomorphic. For this
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Table 14
Splitting of the cubic rhomb-dodecahedron {0kk}cub into its rhombohedral subforms in the five cubic point groups and their diffraction cases for the four
�3 twin laws.

The symbol A indicates diffraction case A due to the symmetry equivalence of all faces of {0kk}cub in the cubic group, but it is formally diffraction case B2 in the
rhombohedral subgroup. Thus, all trigonal prisms {0kk} are diffraction case A for the twofold twin axes 2[111] and 2[211], but diffraction case A for the twin mirror
planes m(111) and m(211), whereas the rhombohedra and trigonal pyramids are always diffraction case S + B1. In column 5 ‘S’ refers to ‘single’ reflections for k 6¼
3N and ‘B1’ to coincident reflections for k = 3N.

Cubic point
group

Rhombohedral
[111] subgroup

Rhombohedral split forms
(reflection sets) Multiplicity

Diffraction cases for the twin laws†
2[111], m(111), 2[211], m(211)

23 3 2 opposite trigonal pyramids {0kk}, {0kk} (3 + 3) All S + B1
2 opposite trigonal prisms {0kk}, {0kk} (3 + 3) A, A, A, A

2/m3 3 1 109.47� rhombohedron {0kk}‡ (6) All S + B1
1 hexagonal prism {0kk} (6) All A

432 32 1 109.47� rhombohedron {0kk}‡ (6) All S + B1
2 opposite trigonal prisms {0kk}, {0kk} (3 + 3) A, A, A, A

43m 3m 2 opposite trigonal pyramids {0kk}, {0kk} (3 + 3) All S + B1
1 hexagonal prism {0kk} (6) All A

4/m32/m 32/m 1 109.47� rhombohedron {0kk}‡ (6) All S + B1
1 hexagonal prism {0kk} (6) All A

† The twin laws and their combinations in this column are explained in detail in Appendix A and Table 12. ‡ 109.47� = tetrahedral angle = angle between two opposite body diagonals
of the cube (= 180� � 2 arctan 2�1/2).
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Table 15
Splitting of the general and special cubic face forms into their rhombohedral subforms for all five cubic point groups, and twin diffraction cases of the
corresponding reflection sets.

Multiplicities of forms are given in parentheses. The forms printed in bold face provide diffraction cases ‘S + B1’ for all twin laws, whereby reflections with n = h + k
+ l = 3N are ‘coincident’ (B1) and those with n = h + k + l 6¼ 3N are ‘single’ (S). The forms printed in normal font represent coincident reflection sets (no ‘S’ cases)
due to the special values n = 3k (special pyramids and rhombohedra) or n = 0 (prisms) given in column 2. Their diffraction cases for the up to four different twin
laws 2[111], m(111), 2[211], m(211) and their combinations (one for 32/m, two for 3m, 32 and 3, four for 3, cf. Appendix A and Table 13) are also given (‘opp’.
means ‘opposite’, i.e. related by an inversion). The symbol A indicates a rhombohedral B2 diffraction case which is A due to the cubic crystal symmetry. For details,
see text.

Cubic
Splitting of cubic forms into rhombohedral subforms with threefold axis along [111]cub

Line face form 4/m32/m! 32/m 43m! 3m 432! 32

1 {hkl} (48): 4 ditrigonal scalenohedra (4 � 12) (24): 4 ditrigonal pyramids (4 � 6) (24): 4 trigonal trapezohedra (4 � 6)

2 {hk(2k � h)} (48): 3 ditrigonal scalenohedra (3 � 12) (24): 3 ditrigonal pyramids (3 � 6) (24): 3 trigonal trapezohedra (3 � 6)
n = 3k 1 hexagonal bipyramid (12) A 1 hexagonal pyramid (6) A/B2 1 trigonal bipyramid (6) B2/A

3 {hk(h + k} (48): 3 ditrigonal scalenohedra (3 � 12) (24): 3 ditrigonal pyramids (3 � 6) (24): 3 trigonal trapezohedra (3 � 6)
n = 0 1 dihexagonal prism (12) A 1 ditrigonal prism (6) B2/A 1 ditrigonal prism (6) B2/A

4 {hhl} (24): 1 ditrigonal scalenohedron (12) (12): 1 ditrigonal pyramid (6) (24): 2 opp. trigonal trapezohedra (2 � 6)
2 rhombohedra (2 � 6) 2 trigonal pyramids (2 � 3) 2 rhombohedra (2 � 6)

5 {hh2h} (24): 1 ditrigonal scalenohedron (12) (12): 1 ditrigonal pyramid (6) (24): 2 opp. trigonal trapezohedra (2 � 6)
n = 0 1 rhombohedron (6) 1 trigonal pyramid (3) 1 rhombohedron (1 � 6)

1 hexagonal prism (6) A 1 trigonal prism (3) B2/A 1 hexagonal prism (1 � 6) A/A

6 {0kl} (24): 2 ditrigonal scalenohedra (2 � 12) (24): 4 ditrigonal pyramids (4 � 6) (24): 4 trigonal trapezohedra (4 � 6)
(pairwise opp.) (pairwise opp.)

7 {0k2k} (24): 1 ditrigonal scalenohedron (12) (24): 2 opp. ditrigonal pyramids (2 � 6) (24): 2 opp. trigonal trapezohedra (2 � 6)
n = 3k 1 hexagonal bipyramid (12) A 2 opp. hexagonal pyramids (2 � 6) A/A 2 opp. trigonal bipyramids (2 � 6) A/A

8 {0kk} (12): 1 109.47��� rhombohedron (6) (12): 2 opp. trigonal 109.47��� pyramids (2 � 3) (12): 1 109.47��� rhombohedron (6)
n = 0 1 hexagonal prism (6) A 1 hexagonal prism (6) A/A 2 opp. trigonal prisms (2 � 3) A/A

9 {hhh} (8): 1 60��� rhombohedron (6) (4): 1 trigonal 60��� pyramid (3) (8): 1 60��� rhombohedron (6)
n = 3h 1 pinacoid (2) A 1 pedion (1) A/B2 1 pinacoid (2) A/A

10 {h00} (6): 1 90��� rhombohedron (6) (6): 2 opp. trigonal 90��� pyramids (2 � 3) (6): 1 90��� rhombohedron (6)
(cube) {h00}, {h00} (cube)

Cubic
Splitting of cubic forms into rhombohedral subforms with threefold axis along [111]cub

Line face form 2/m3! 3 23! 3

1 {hkl} (24): 4 rhombohedra (4 � 6) (12): 4 trigonal pyramids (4 � 3)

2 {hk(2k � h)} (24): 3 rhombohedra (3 � 6) (12): 3 trigonal pyramids (3 � 3)
n = 3k 1 rhombohedron (6) B1/A 1 trigonal pyramid (3) B1/B1/B2/A

3 {hk(h + k} (24): 3 rhombohedra (3 � 6) (12): 3 trigonal pyramids (3 � 3)
n = 0 1 hexagonal prism (6) A/B1 1 trigonal prism (3) B2/A/B1/B1

4 {hhl} (24): 4 rhombohedra (4 � 6) (12): 4 trigonal pyramids (4 � 3)

5 {hh2h} (24): 3 rhombohedra (3 � 6) (12): 3 trigonal pyramids (3 � 3)
n = 0 1 hexagonal prism (1 � 6) A/A 1 trigonal prism (3) B2/A/A/B2

6 {0kl} (12): 2 rhombohedra (2 � 6) (12): 4 trigonal pyramids (4 � 3)
(pairwise opp.)

7 {0k2k} (12): 1 rhombohedron (6) (12): 2 opp. trigonal pyramids (2 � 3)
n = 3k 1 rhombohedron (6) B1/A 2 opp. trigonal pyramids (2 � 3) B1/B1/A/A

8 {0kk} (12): 1 109.47��� rhombohedron (6) (12): 2 opp. trigonal 109.47��� pyramids (2 � 3)
n = 0 1 hexagonal prism (6) A/A 2 opp. trigonal prisms (2 � 3) A/A/A/A

9 {hhh} (8): 1 60��� rhombohedron (6) (4): 1 trigonal 60��� pyramid (3)
n = 3h 1 pinacoid (2) A/A 1 pedion (1) A/B2/B2/A

10 {h00} (6): 1 90��� rhombohedron (6) (6): 2 opp. trigonal 90��� pyramids (2 � 3)
(cube) {h00}, {h00}



reason, the transformation equations between the two right-

handed partners a1, b1, c1 (green in Fig. 4) and a3, b3, c3

(yellow) and the right-handed coincidence lattice aT, bT, cT

(red) are given below. Lattice a3, b3, c3 is generated by a

clockwise rotation of a1, b1, c1 by 53.13� (= 2 arctan 1/2) around

the tetragonal c axis.

Coincidence lattice:

aT ¼ 2a1 � b1 ¼ 2a3 þ b3

bT ¼ a1 þ 2b1 ¼ �a3 þ 2b3

cT ¼ c1 ¼ c3

Det ¼ þ5 Det ¼ þ5

with the supercell parameters aT = 51/2a1 = 51/2a2, bT = 51/2b1 =

51/2b2, cT = c1 = c3, VT = 5V1 = 5V3.

Reverse transformations:

a1 ¼ ð2aT þ bTÞ=5 a3 ¼ ð2aT � bTÞ=5

b1 ¼ ð�aT þ 2bTÞ=5 b3 ¼ ðaT þ 2bTÞ=5

c1 ¼ cT c3 ¼ cT

Det ¼ þ5 Det ¼ þ5:

Transformations between the basis vectors a1, b1, c1 (start,

green in Fig. 4) and a3, b3, c3 (yellow):

a1 ¼ ð3a3 þ 4b3Þ=5 a3 ¼ ð3a1 � 4b1Þ=5

b1 ¼ ð�4a3 þ 3b3Þ=5 b3 ¼ ð4a1 þ 3b1Þ=5

c1 ¼ c3 c3 ¼ c1

Det ¼ þ1 Det ¼ þ1:

Note that the second power of the latter transformations

(a1, b1, c1)$ (a3, b3, c3) is not the identity transformation, but

rather a rotation of 2 � 53.13� = 106.26�, in contrast to the

corresponding (‘binary’) transformations (a1, b1)$ (a2, b2) in

x5.1.

The equations for transformations of the Miller indices hkl

do not need to be given since they are the same as those of the

basis vectors, as can be seen by comparing xx5.1 and 5.2.

C2. Hexagonal R7 reflection twins m0ð1230Þ and m0ð5410Þ with
both twin partners based on right-handed coordinate systems

In analogy to xC1 above, the relations between the three

right-handed coordinate systems a1, b1, c1 (green in Fig. 9),

aT, bT, cT (red) and a3, b3, c3 (yellow) are given below, the

latter generated by a clockwise rotation of a1, b1, c1 by 158.2�

{= 120� + 2 arcsin [1/2 ð3=7Þ1=2]} around the hexagonal axis (cf.

Fig. 9).

Coincidence lattice:

aT ¼ 2a1 � b1 ¼ �a3 þ 2b3

bT ¼ a1 þ 3b1 ¼ �2a3 � 3b3

cT ¼ c1 ¼ c3

Det ¼ þ7 Det ¼ þ7

with supercell parameters aT = 71/2a1 = 71/2a2, bT = 71/2b1 =

71/2b2, cT = c1 = c3, VT = 7V1 = 7V3.

Reverse transformations:

a1 ¼ ð3aT þ bTÞ=7 a3 ¼ ð�3aT � 2bTÞ=7

b1 ¼ ð�aT þ 2bTÞ=7 b3 ¼ ð2aT � bTÞ=7

c1 ¼ cT c3 ¼ cT

Det ¼ þ1=7 Det ¼ þ1=7:

Transformations between a1, b1, c1 (start, green in Fig. 9)

and a3, b3, c3 (yellow):

a1 ¼ ð�5a3 þ 3b3Þ=7 a3 ¼ ð�8a1 � 3b1Þ=7

b1 ¼ ð�3a3 � 8b3Þ=7 b3 ¼ ð3a1 � 5b1Þ=7

c1 ¼ c3 c3 ¼ c1

Det ¼ þ1 Det ¼ þ1:

Note again that the latter transformations are not binary, i.e.

their second powers are not the identity. The transformations

of the Miller indices hkl are the same as those of the basis

vectors (cf. xx6.1 and 6.2).

The authors are grateful to J. Thar and A. von Berg of the

Institut für Kristallographie for the preparation of the figures

and to two unknown referees whose comments considerably

helped to improve the paper.
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